540 research outputs found

    The assessment of science: the relative merits of post- publication review, the impact factor, and the number of citations

    Get PDF
    The assessment of scientific publications is an integral part of the scientific process. Here we investigate three methods of assessing the merit of a scientific paper: subjective post-publication peer review, the number of citations gained by a paper, and the impact factor of the journal in which the article was published. We investigate these methods using two datasets in which subjective post-publication assessments of scientific publications have been made by experts. We find that there are moderate, but statistically significant, correlations between assessor scores, when two assessors have rated the same paper, and between assessor score and the number of citations a paper accrues. However, we show that assessor score depends strongly on the journal in which the paper is published, and that assessors tend to over-rate papers published in journals with high impact factors. If we control for this bias, we find that the correlation between assessor scores and between assessor score and the number of citations is weak, suggesting that scientists have little ability to judge either the intrinsic merit of a paper or its likely impact. We also show that the number of citations a paper receives is an extremely error-prone measure of scientific merit. Finally, we argue that the impact factor is likely to be a poor measure of merit, since it depends on subjective assessment. We conclude that the three measures of scientific merit considered here are poor; in particular subjective assessments are an error-prone, biased, and expensive method by which to assess merit. We argue that the impact factor may be the most satisfactory of the methods we have considered, since it is a form of pre-publication review. However, we emphasise that it is likely to be a very error-prone measure of merit that is qualitative, not quantitative

    Understanding Selectivity of Mesoporous Silica-Grafted Diglycolamide-Type Ligands in the Solid-Phase Extraction of Rare Earths

    Get PDF
    Rare earth elements (REEs) and their compounds are essential for rapidly developing modern technologies. These materials are especially critical in the area of green/sustainable energy; however, only very high-purity fractions are appropriate for these applications. Yet, achieving efficient REE separation and purification in an economically and environmentally effective way remains a challenge. Moreover, current extraction technologies often generate large amounts of undesirable wastes. In that perspective, the development of selective, reusable, and extremely efficient sorbents is needed. Among numerous ligands used in the liquid-liquid extraction (LLE) process, the diglycolamide-based (DGA) ligands play a leading role. Although these ligands display notable extraction performance in the liquid phase, their extractive chemistry is not widely studied when such ligands are tethered to a solid support. A detailed understanding of the relationship between chemical structure and function (i.e., extraction selectivity) at the molecular level is still missing although it is a key factor for the development of advanced sorbents with tailored selectivity. Herein, a series of functionalized mesoporous silica (KIT-6) solid phases were investigated as sorbents for the selective extraction of REEs. To better understand the extraction behavior of these sorbents, different spectroscopic techniques (solid-state NMR, X-ray photoelectron spectroscopy, XPS, and Fourier transform infrared spectroscopy, FT-IR) were implemented. The obtained spectroscopic results provide useful insights into the chemical environment and reactivity of the chelating ligand anchored on the KIT-6 support. Furthermore, it can be suggested that depending on the extracted metal and/or structure of the ligand and its attachment to KIT-6, different functional groups (i.e., C= O, N-H, or silanols) act as the main adsorption centers and preferentially capture targeted elements, which in turn may be associated with the different selectivity of the synthesized sorbents. Thus, by determining how metals interact with different supports, we aim to better understand the solid-phase extraction process of hybrid (organo)silica sorbents and design better extraction materials

    What are the challenges and resilience resources identified by informal carers during the first UK COVID-19 lockdown? A longitudinal qualitative study using naturalistic data

    Get PDF
    COVID-19 has posed serious challenges for informal carers living in the UK. This article examines some of the specific challenges facing carers and the resources they used to manage them throughout the first UK lockdown. We used a framework approach to analyse naturalistic, longitudinal data from 30 carers taking part in 96 of Mobilise’s daily Virtual Cuppas between March and July 2020. We found that lack of information and social restrictions cumulatively impacted carers’ sense of certainty, control and motivation. This took an emotional toll on the carers, leading to exhaustion and burden. However, carers quickly established new routines and used humour and self-care to actively manage their wellbeing. Carers received support but also provided it to those in need, including fellow members of the caregiving community, supporting an ecological approach to carer resilience. Our findings may be used to anticipate challenges and promote protective resilience resources in future lockdowns

    Gln-tRNAGln synthesis in a dynamic transamidosome from Helicobacter pylori, where GluRS2 hydrolyzes excess Glu-tRNAGln

    Get PDF
    In many bacteria and archaea, an ancestral pathway is used where asparagine and glutamine are formed from their acidic precursors while covalently linked to tRNAAsn and tRNAGln, respectively. Stable complexes formed by the enzymes of these indirect tRNA aminoacylation pathways are found in several thermophilic organisms, and are called transamidosomes. We describe here a transamidosome forming Gln-tRNAGln in Helicobacter pylori, an ε-proteobacterium pathogenic for humans; this transamidosome displays novel properties that may be characteristic of mesophilic organisms. This ternary complex containing the non-canonical GluRS2 specific for Glu-tRNAGln formation, the tRNA-dependent amidotransferase GatCAB and tRNAGln was characterized by dynamic light scattering. Moreover, we observed by interferometry a weak interaction between GluRS2 and GatCAB (KD = 40 ± 5 µM). The kinetics of Glu-tRNAGln and Gln-tRNAGln formation indicate that conformational shifts inside the transamidosome allow the tRNAGln acceptor stem to interact alternately with GluRS2 and GatCAB despite their common identity elements. The integrity of this dynamic transamidosome depends on a critical concentration of tRNAGln, above which it dissociates into separate GatCAB/tRNAGln and GluRS2/tRNAGln complexes. Ester bond protection assays show that both enzymes display a good affinity for tRNAGln regardless of its aminoacylation state, and support a mechanism where GluRS2 can hydrolyze excess Glu-tRNAGln, ensuring faithful decoding of Gln codons

    Comparison of Hepatic and Nephric Total Mercury Concentrations Between Feral and Ranch American Mink (Neovison vison) from Northwestern Poland

    Get PDF
    For many years the American mink (Neovison vison) has been used in North America (where it originates from) as a sensitive indirect bioindicator in assessing the degree of mercury (Hg) contamination in terrestrial ecosystems. The aim of this paper was the determination of total concentrations of Hg in the liver and kidneys of feral and ranch mink from the Warta Mouth National Park (WMNP) and from farms located in northwestern Poland, for comparison with similar data on American mink from North America. In road-killed feral mink from the WMNP, the mean concentrations were 11.8 and 14.1 mg/kg dry weight in the liver and kidney, respectively. Mean Hg concentrations in feral mink were from 240 to 90 times higher in these two respective tissues than in ranch mink. The feral mink from northwestern Poland had concentrations of hepatic and nephric Hg similar to the highest concentrations that have been recorded over the past several decades in wild American mink from certain areas of Canada and the USA

    Seasonality and Prevalence of Leishmania major Infection in Phlebotomus duboscqi Neveu-Lemaire from Two Neighboring Villages in Central Mali

    Get PDF
    Phlebotomus duboscqi is the principle vector of Leishmania major, the causative agent of cutaneous leishmaniasis (CL), in West Africa and is the suspected vector in Mali. Although found throughout the country the seasonality and infection prevalence of P. duboscqi has not been established in Mali. We conducted a three year study in two neighboring villages, Kemena and Sougoula, in Central Mali, an area with a leishmanin skin test positivity of up to 45%. During the first year, we evaluated the overall diversity of sand flies. Of 18,595 flies collected, 12,952 (69%) belonged to 12 species of Sergentomyia and 5,643 (31%) to two species of the genus Phlebotomus, P. duboscqi and P. rodhaini. Of those, P. duboscqi was the most abundant, representing 99% of the collected Phlebotomus species. P. duboscqi was the primary sand fly collected inside dwellings, mostly by resting site collection. The seasonality and infection prevalence of P. duboscqi was monitored over two consecutive years. P. dubsocqi were collected throughout the year. Using a quasi-Poisson model we observed a significant annual (year 1 to year 2), seasonal (monthly) and village effect (Kemena versus Sougoula) on the number of collected P. duboscqi. The significant seasonal effect of the quasi-Poisson model reflects two seasonal collection peaks in May-July and October-November. The infection status of pooled P. duboscqi females was determined by PCR. The infection prevalence of pooled females, estimated using the maximum likelihood estimate of prevalence, was 2.7% in Kemena and Sougoula. Based on the PCR product size, L. major was identified as the only species found in flies from the two villages. This was confirmed by sequence alignment of a subset of PCR products from infected flies to known Leishmania species, incriminating P. duboscqi as the vector of CL in Mali

    ALG: Automated Genotype Calling of Luminex Assays

    Get PDF
    Single nucleotide polymorphisms (SNPs) are the most commonly used polymorphic markers in genetics studies. Among the different platforms for SNP genotyping, Luminex is one of the less exploited mainly due to the lack of a robust (semi-automated and replicable) freely available genotype calling software. Here we describe a clustering algorithm that provides automated SNP calls for Luminex genotyping assays. We genotyped 3 SNPs in a cohort of 330 childhood leukemia patients, 200 parents of patient and 325 healthy individuals and used the Automated Luminex Genotyping (ALG) algorithm for SNP calling. ALG genotypes were called twice to test for reproducibility and were compared to sequencing data to test for accuracy. Globally, this analysis demonstrates the accuracy (99.6%) of the method, its reproducibility (99.8%) and the low level of no genotyping calls (3.4%). The high efficiency of the method proves that ALG is a suitable alternative to the current commercial software. ALG is semi-automated, and provides numerical measures of confidence for each SNP called, as well as an effective graphical plot. Moreover ALG can be used either through a graphical user interface, requiring no specific informatics knowledge, or through command line with access to the open source code. The ALG software has been implemented in R and is freely available for non-commercial use either at http://alg.sourceforge.net or by request to [email protected]

    Comt1 genotype and expression predicts anxiety and nociceptive sensitivity in inbred strains of mice

    Get PDF
    Catechol-O-methyltransferase (COMT) is an ubiquitously expressed enzyme that maintains basic biologic functions by inactivating catechol substrates. In humans, polymorphic variance at the COMT locus has been associated with modulation of pain sensitivity (Andersen & Skorpen, 2009) and risk for developing psychiatric disorders (Harrison & Tunbridge, 2008). A functional haplotype associated with increased pain sensitivity was shown to result in decreased COMT activity by altering mRNA secondary structure-dependent protein translation (Nackley et al., 2006). However, the exact mechanisms whereby COMT modulates pain sensitivity and behavior remain unclear and can be further studied in animal models. We have assessed Comt1 gene expression levels in multiple brain regions in inbred strains of mice and have discovered that Comt1 is differentially expressed among the strains, and this differential expression is cis-regulated. A B2 Short Interspersed Element (SINE) was inserted in the 3′UTR of Comt1 in 14 strains generating a common haplotype that correlates with gene expression. Experiments using mammalian expression vectors of full-length cDNA clones with and without the SINE element demonstrate that strains with the SINE haplotype (+SINE) have greater Comt1 enzymatic activity. +SINE mice also exhibit behavioral differences in anxiety assays and decreased pain sensitivity. These results suggest that a haplotype, defined by a 3′ UTR B2 SINE element, regulates Comt1 expression and some mouse behaviors

    Atypical functional connectome hierarchy in autism.

    Get PDF
    One paradox of autism is the co-occurrence of deficits in sensory and higher-order socio-cognitive processing. Here, we examined whether these phenotypical patterns may relate to an overarching system-level imbalance-specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. Combining connectome gradient and stepwise connectivity analysis based on task-free functional magnetic resonance imaging (fMRI), we demonstrated atypical connectivity transitions between sensory and higher-order default mode regions in a large cohort of individuals with autism relative to typically-developing controls. Further analyses indicated that reduced differentiation related to perturbed stepwise connectivity from sensory towards transmodal areas, as well as atypical long-range rich-club connectivity. Supervised pattern learning revealed that hierarchical features predicted deficits in social cognition and low-level behavioral symptoms, but not communication-related symptoms. Our findings provide new evidence for imbalances in network hierarchy in autism, which offers a parsimonious reference frame to consolidate its diverse features
    corecore