21 research outputs found

    COPD Due to Sulfur Mustard (Mustard Lung)

    Get PDF

    Highly sensitive C-reactive protein levels in Iranian patients with pulmonary complication of sulfur mustard poisoning and its correlation with severity of airway diseases

    Get PDF
    Background: Sulfur mustard (SM) is a chemical warfare agent that can cause serious pulmonary complications. This study was designed to determine serum highly sensitive C-reactive protein (hs-CRP) and evaluate its correlation with lung function parameters in patients with chronic obstructive pulmonary disease (COPD) due to SM poisoning. Methods: Fifty consecutive SM patients with stable COPD and a mean age 46.3 + 9.18 years were enrolled in this cross sectional study. Thirty healthymen were selected as controls. Lung function parameters were evaluated. Serum hs-CRP by immunoturbidometry assay was measured in both the patients and controls. Results: In the case group, the mean forced expiratory volume in one second (FEV1) was 2.14 + 0.76 L (58.98%+17.51% predicted). The mean serum hs-CRP was 9.4+6.78 SD and 3.9+1.92 SDmg/L in the cases and controls, respectively, with significant statistical differences (p < .001). There was negative correlation between the serum hs-CRP and FEV1 levels (p ¼ .01). The serum hs-CRP levels were also correlated with Global Initiative for ChronicObstructive Lung disease (GOLD) stages (r ¼ .45, p < .001). Conclusions:Our findings suggest that the serum hs-CRP level is increased in SM patients with COPD and may have a direct correlation with disease severity. It may then be used as a marker for the severity of COPD in patients with SM poisoning

    Interleukin-6 and airflow limitation in chemical warfare patients with chronic obstructive pulmonary disease

    Get PDF
    Objectives: Chronic obstructive pulmonary disease (COPD) is one of the main late complications of sulfur mustard poisoning. The aim of this study was to evaluate serum levels of interleukin (IL)-6 in war veterans with pulmonary complications of sulfur mustard poisoning and their correlation with severity of airways disease. Methods: Fifty consecutive patients with sulfur mustard poisoning and stable COPD, and of mean age 46.3 ± 9.18 years were enrolled in this study. Thirty healthy men were selected as controls and matched to cases by age and body mass index. Spirometry, arterial blood gas, six-minute walk test, BODE (body mass index, obstruction, dyspnea, and exercise capacity), and St George’s Respiratory Questionnaire about quality of life were evaluated. Serum IL-6 was measured in both patient and control groups. Results: Fifty-four percent of patients had moderate COPD. Mean serum IL-6 levels were 15.01 ± standard deviation (SD) 0.61 pg/dL and 4.59 ± 3.40 pg/dL in the case and control groups, respectively (P = 0.03). There was a significant correlation between IL-6 levels and Global Initiative for Chronic Obstructive Lung Disease stage (r = 0.25, P = 0.04) and between IL-6 and BODE index (r = 0.38, P = 0.01). There was also a significant negative correlation between serum IL-6 and forced expiratory volume in one second (FEV1, r = −0.36, P = 0.016). Conclusion: Our findings suggest that serum IL-6 is increased in patients with sulfur mustard poisoning and COPD, and may have a direct association with airflow limitation

    The management of bronchus intermedius complications after lung transplantation: A retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airway complications following lung transplantation remain a significant cause of morbidity and mortality. The management of bronchial complications in Bronchus Intermedius (BI) is challenging due to the location of right upper bronchus. The aim of this study was to analyze the results of BI Montgomery T-tube stent in a consecutive patients with lung transplantations.</p> <p>Methods</p> <p>Between January 2007 and December 2010, 132 lung transplantations were performed at Foch Hospital, Suresnes, France. All the patients who had BI Montgomery T-tube after lung transplantation were included in this retrospective study. The demographic and interventional data and also complications were recorded.</p> <p>Results</p> <p>Out of 132 lung transplant recipients, 12 patients (9 male and 3 female) were entered into this study. The indications for lung transplantation were: cystic fibrosis 8 (67%), emphysema 3 (25%), and idiopathic pulmonary fibrosis 1 (8%). Most of the patients (83%) had bilateral lung transplantation. The mean interval between lung transplantation and interventional bronchoscopy was 11.5 ± 9.8 (SD) months. There was bronchial stenosis at the level of BI in 7 patients (58.3%). The Montgomery T-tube number 10 was used in 9 patients (75%). There was statistically significant difference in Forced Expiratory Volume in one second (FEV1) before and after stent placement (p = 0.01). The most common complication after stent placement was migration (33%).</p> <p>Conclusion</p> <p>BI complications after lung transplantation are still a significant problem. Stenosis or malacia following lung transplantation could be well managed with modified Montgomery T-tube.</p

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950.Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. Methods: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting. Findings: Globally, for females, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and haemoglobinopathies and haemolytic anaemias in both 1990 and 2017. For males, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and tuberculosis including latent tuberculosis infection in both 1990 and 2017. In terms of YLDs, low back pain, headache disorders, and dietary iron deficiency were the leading Level 3 causes of YLD counts in 1990, whereas low back pain, headache disorders, and depressive disorders were the leading causes in 2017 for both sexes combined. All-cause age-standardised YLD rates decreased by 3·9% (95% uncertainty interval [UI] 3·1-4·6) from 1990 to 2017; however, the all-age YLD rate increased by 7·2% (6·0-8·4) while the total sum of global YLDs increased from 562 million (421-723) to 853 million (642-1100). The increases for males and females were similar, with increases in all-age YLD rates of 7·9% (6·6-9·2) for males and 6·5% (5·4-7·7) for females. We found significant differences between males and females in terms of age-standardised prevalence estimates for multiple causes. The causes with the greatest relative differences between sexes in 2017 included substance use disorders (3018 cases [95% UI 2782-3252] per 100 000 in males vs 1400 [1279-1524] per 100 000 in females), transport injuries (3322 [3082-3583] vs 2336 [2154-2535]), and self-harm and interpersonal violence (3265 [2943-3630] vs 5643 [5057-6302]). Interpretation: Global all-cause age-standardised YLD rates have improved only slightly over a period spanning nearly three decades. However, the magnitude of the non-fatal disease burden has expanded globally, with increasing numbers of people who have a wide spectrum of conditions. A subset of conditions has remained globally pervasive since 1990, whereas other conditions have displayed more dynamic trends, with different ages, sexes, and geographies across the globe experiencing varying burdens and trends of health loss. This study emphasises how global improvements in premature mortality for select conditions have led to older populations with complex and potentially expensive diseases, yet also highlights global achievements in certain domains of disease and injury

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    The Evaluation of Diastolic Hypertention in Sleep Overlap Syndrome

    No full text
    Introduction: The overlap syndrome, consisting ofobstructive sleep apnea hypopnea syndrome (OSAHS) and chronic obstructvie pulmonary disease (COPD) is a major problem in COPD patients. OSHAS corresponds to the likelihood of systemic hypertension.The present study was aimed to evaluate the association between apnea-hypopnea index and diastolic blood presssure (DBP) in overlap  patients. Materials and Methods: We conducted a cross-sectional study involving overnight polysomnography after measurment of resting diastolic blood pressure (DBP) in patients with overlap syndrome in Sleep Laboartory of Imam Reza Hospital, Mashhad, Iran from October 2011 to December 2012. Participants were divided into four subgroups regarding to their Apnea-Hypopnea Index (AHI) (AHI 30).Descriptive statistics included age, body mass index (BMI), OSA, Apnea-Hypopnea Index (AHI), DBP, and neck circumference. Results: Sixty participants ranged between from 46 to 82 years old were entered into this study. There was statistically significant difference in mean DBP among different AHI subgroups (80±0.50, 95±0.60, and 105±0.65, respectively) (
    corecore