18 research outputs found

    Conception and photophysical properties of coordination and organometallic polymers

    No full text
    Ces travaux portent sur la conception et l’étude des propriétés photophysiques de polymères de coordination et organométalliques. Dans un premier temps, nous nous sommes intéressés aux adduits formés à partir d’halogénure de cuivre(I) (CuxXyLz ; X= I, Br, Cl). Cette famille de composés possède une grande richesse structurelle de part les conditions de synthèse (choix du ligand, stoechiométrie, choix du solvant, température…) et des propriétés de luminescence variées. Nous nous sommes concentrés sur la synthèse, la caractérisation physique et photophysique d’adduits de CuX à ligands de types monothioéther (RSR) et dithioéther (RS(CH2)nSR). Nous avons ensuite étendu notre étude aux adduits CuX coordinés à des ligands P-chirogéniques (i.e chiralité portée par l’atome de phosphore) puis à des adduits CuX coordinés à la fois par des ligands phosphorés (PPh3 ou dppm) et par des ligands mono- ou dithioéthers. Dans un second temps, nous avons voulu connaître l’impact de l’incorporation de ligands P-chirogéniques (P(C17H35)(Ph)(i-Pr)) sur les propriétés photophysiques de polymères organométalliques conjugués 1D à base de platine(II) et de ligands arylbiséthynyles (-C≡C(Ar)C≡C-). Ce type de polymère basé sur le platine(II) est souvent utilisé comme modèle dans la compréhension des transferts d’énergie dans les états excités. Ces polymères, une fois caractérisés, ont été comparés aux analogues achiraux contenant le fragment trans-Pt(P(PBu)3)2 et plusieurs différences ont été notées. Les observations et conclusions sur la relation structure-propriété sont utiles pour la conception future de matériaux photoniques portant des groupements chiraux.This work focuses on the design and study of photophysical properties of coordination and organometallics polymers. Initially, we focused on adducts formed from copper(I) halides (CuxXyLz; X = I, Br, Cl). Indeed, these compounds have great structural diversity depending on the synthesis conditions (nature of ligand, stoichiometry, choice of solvent, temperature...) and various luminescence properties. We focused on the synthesis, physical and photophysical characterization of copper(I) halide adducts based on monothioether (RSR) and dithioether (RS(CH2)nSR) ligands. Then, we extended our study to the adducts of copper(I) halide coordinated by phosphorus P-chirogenics ligands (ie chirality carried by the phosphorus atom) and then to CuX adducts coordinated by both phosphorus ligands (PPh3 or dppm)) and mono- or dithioether ligands. Secondly, the impact of the incorporation of P-chirogenics ligands (P(C17H35)(Ph)(i-Pr)) on the photophysical properties of organometallic conjugated polymers 1D based on platinum(II) and arylbisethynyles ligands (-C≡C(Ar)C≡C-) was investigated. This type of polymer based on platinum(II) is often used as a model for the understanding of excited states energy transfers. These polymers, once characterized, were compared to the achiral analogues containing the fragment of trans-Pt(P(PBu)3)2 and several differences were noted. The findings and conclusions on the structure-property relationship are useful in the future design of photonic materials bearing chiral groups

    Conception et propriétés photophysiques de polymères de coordination et de polymères organométalliques

    No full text
    This work focuses on the design and study of photophysical properties of coordination and organometallics polymers. Initially, we focused on adducts formed from copper(I) halides (CuxXyLz; X = I, Br, Cl). Indeed, these compounds have great structural diversity depending on the synthesis conditions (nature of ligand, stoichiometry, choice of solvent, temperature...) and various luminescence properties. We focused on the synthesis, physical and photophysical characterization of copper(I) halide adducts based on monothioether (RSR) and dithioether (RS(CH2)nSR) ligands. Then, we extended our study to the adducts of copper(I) halide coordinated by phosphorus P-chirogenics ligands (ie chirality carried by the phosphorus atom) and then to CuX adducts coordinated by both phosphorus ligands (PPh3 or dppm)) and mono- or dithioether ligands. Secondly, the impact of the incorporation of P-chirogenics ligands (P(C17H35)(Ph)(i-Pr)) on the photophysical properties of organometallic conjugated polymers 1D based on platinum(II) and arylbisethynyles ligands (-C≡C(Ar)C≡C-) was investigated. This type of polymer based on platinum(II) is often used as a model for the understanding of excited states energy transfers. These polymers, once characterized, were compared to the achiral analogues containing the fragment of trans-Pt(P(PBu)3)2 and several differences were noted. The findings and conclusions on the structure-property relationship are useful in the future design of photonic materials bearing chiral groups.Ces travaux portent sur la conception et l’étude des propriétés photophysiques de polymères de coordination et organométalliques. Dans un premier temps, nous nous sommes intéressés aux adduits formés à partir d’halogénure de cuivre(I) (CuxXyLz ; X= I, Br, Cl). Cette famille de composés possède une grande richesse structurelle de part les conditions de synthèse (choix du ligand, stoechiométrie, choix du solvant, température…) et des propriétés de luminescence variées. Nous nous sommes concentrés sur la synthèse, la caractérisation physique et photophysique d’adduits de CuX à ligands de types monothioéther (RSR) et dithioéther (RS(CH2)nSR). Nous avons ensuite étendu notre étude aux adduits CuX coordinés à des ligands P-chirogéniques (i.e chiralité portée par l’atome de phosphore) puis à des adduits CuX coordinés à la fois par des ligands phosphorés (PPh3 ou dppm) et par des ligands mono- ou dithioéthers. Dans un second temps, nous avons voulu connaître l’impact de l’incorporation de ligands P-chirogéniques (P(C17H35)(Ph)(i-Pr)) sur les propriétés photophysiques de polymères organométalliques conjugués 1D à base de platine(II) et de ligands arylbiséthynyles (-C≡C(Ar)C≡C-). Ce type de polymère basé sur le platine(II) est souvent utilisé comme modèle dans la compréhension des transferts d’énergie dans les états excités. Ces polymères, une fois caractérisés, ont été comparés aux analogues achiraux contenant le fragment trans-Pt(P(PBu)3)2 et plusieurs différences ont été notées. Les observations et conclusions sur la relation structure-propriété sont utiles pour la conception future de matériaux photoniques portant des groupements chiraux

    Organometallic Oligomers Based on Bis(arylacetylide)bis(P-chirogenic phosphine)platinum(II) Complexes: Synthesis and Photonic Properties

    No full text
    A series of P-chirogenic oligomers of the type (-CEC aryl-C C-PtL2-)(n) [L = (R)- and (S)-P(Ph)(iPr)(C17H35); aryl = 1,4-benzene, 2,1,3-benzothiadiazole] along the corresponding achiral analogues (L = PBu3) and model complexes PhC CPtL2C CPh were prepared from the ephedrine strategy and were fully characterized [H-1, P-31 NMR; IR; small-angle X-ray scattering (SAXS); gel permeation chromatography (GPC); thermal gravimetric analysis (TGA); circular dichroism, UV-vis, and luminescence spectroscopy; photophysics, and degree of anisotropy measurements]. From the CD measurements, the chiral environment of the phosphine ligands is modestly felt by the aryl moieties. Concurrently, the TGA shows that the P(C17H35)(Ph)(i-Pr)-containing materials are more stable than those containing the shorter chain ligand PBu3, and exhibits red-shifted absorption and emission bands compared to those including the PBu3 ligands. The presence of the long chain on the phosphorus atoms does not greatly alter the photophysical parameters, notably the emission lifetimes, and fast triplet energy transfer terminal* --> central unit has been deduced from the absence of luminescence arising from the terminal units

    Organometallic Oligomers Based on Bis(arylacetylide)bis(P-chirogenic phosphine)platinum(II) Complexes: Synthesis and Photonic Properties

    No full text
    A series of P-chirogenic oligomers of the type (CC<b>aryl</b>CCPtL<sub>2</sub>)<i><sub>n</sub></i> [L = (<i>R</i>)- and (<i>S</i>)-P­(Ph)­(<i>i</i>Pr)­(C<sub>17</sub>H<sub>35</sub>); <b>aryl</b> = 1,4-benzene, 2,1,3-benzothiadiazole] along the corresponding achiral analogues (L = PBu<sub>3</sub>) and model complexes PhCCPtL<sub>2</sub>CCPh were prepared from the ephedrine strategy and were fully characterized [<sup>1</sup>H, <sup>31</sup>P NMR; IR; small-angle X-ray scattering (SAXS); gel permeation chromatography (GPC); thermal gravimetric analysis (TGA); circular dichroism, UV–vis, and luminescence spectroscopy; photophysics, and degree of anisotropy measurements]. From the CD measurements, the chiral environment of the phosphine ligands is modestly felt by the aryl moieties. Concurrently, the TGA shows that the P­(C<sub>17</sub>H<sub>35</sub>)­(Ph)­(<i>i</i>-Pr)-containing materials are more stable than those containing the shorter chain ligand PBu<sub>3</sub>, and exhibits red-shifted absorption and emission bands compared to those including the PBu<sub>3</sub> ligands. The presence of the long chain on the phosphorus atoms does not greatly alter the photophysical parameters, notably the emission lifetimes, and fast triplet energy transfer terminal* → central unit has been deduced from the absence of luminescence arising from the terminal units

    Luminescent P-Chirogenic Copper Clusters

    No full text
    P-chirogenic dusters of the cubanes [Cu4I4L4] (L = chiral phosphine) were prepared from (+)- and (-)-ephedrine with L = (S)- or (R)-(R)(Ph)(i-Pr)P (with R = CH3 (seven steps) or C17H35 (10 steps)) with e.e. up to 96%. The X-ray structure of [Cu4I4((R)-(CH3)(Ph)(i-Pr)P)(4)] confirmed the cubane structure with average Cu center dot center dot center dot Cu and Cu center dot center dot center dot I distances of 2.954 and 2.696 angstrom, respectively. The cubane structure of the corresponding [Cu4I4((S)-(CH3)(Ph)(i-Pr)P)(4)] was established by the comparison of the X-ray powder diffraction patterns, and the opposite optical activity of the (S)- and (R)-ligand-containing clusters was confirmed by circular dichroism spectroscopy. Small-angle X-ray scattering patterns of one duster bearing a C17H35 chain exhibit a weak signal at 2 theta similar to 2.8 degrees (d similar to 31.6 angstrom), indicating some molecular ordering in the liquid state. The emission spectra exhibit two emission bands, both associated with triplet excited states. These two bands are assigned as follows: the high energy emission is due to a halide-to-ligand charge transfer, XLCT, state mixed with LXCT (ligand-to-halide-charge-transfer). The low energy band is assigned to a cluster-centered excited state. Both emissions are found to be thermochromic with the relative intensity changing between 77 and 298 K for the clusters in methylcyclohexane solution. Several differences are observed in the photophysical parameters, emission quantum yields and lifetimes for R = CH3 and C17H35. The measurements of the polarization along the emission indicate that the emission is depolarized, consistent with an approximate tetrahedral geometry of the chromophores

    Reactivity of CuI and CuBr toward Dialkyl Sulfides RSR: From Discrete Molecular Cu<sub>4</sub>I<sub>4</sub>S<sub>4</sub> and Cu<sub>8</sub>I<sub>8</sub>S<sub>6</sub> Clusters to Luminescent Copper(I) Coordination Polymers

    No full text
    The 1D coordination polymer (CP) [(Me<sub>2</sub>S)<sub>3</sub>{Cu<sub>2</sub>(μ-I)<sub>2</sub>}]<sub><i>n</i></sub> (<b>1</b>) is formed when CuI reacts with SMe<sub>2</sub> in <i>n</i>-heptane, whereas in acetonitrile (MeCN), the reaction forms exclusively the 2D CP [(Me<sub>2</sub>S)<sub>3</sub>{Cu<sub>4</sub>(μ-I)<sub>4</sub>}]<sub><i>n</i></sub> (<b>2</b>) containing “flower-basket” Cu<sub>4</sub>I<sub>4</sub> units. The reaction product of CuI with MeSEt is also solvent-dependent, where the 1D polymer [(MeSEt)<sub>2</sub>{Cu<sub>4</sub>(μ<sub>3</sub>-I)<sub>2</sub>(μ<sub>2</sub>-I)<sub>2</sub>}­(MeCN)<sub>2</sub>]<sub><i>n</i></sub> (<b>3</b>) containing “stepped-cubane” Cu<sub>4</sub>I<sub>4</sub> units is isolated in MeCN. In contrast, the reaction in <i>n</i>-heptane affords the 1D CP [(MeSEt)<sub>3</sub>{Cu<sub>4</sub>(μ<sub>3</sub>-I)<sub>4</sub>}]<sub><i>n</i></sub> (<b>4</b>) containing “closed-cubane” Cu<sub>4</sub>I<sub>4</sub> clusters. The reaction of MeSPr with CuI provides the structurally related 1D CP [(MeSPr)<sub>3</sub>{Cu<sub>4</sub>(μ<sub>3</sub>-I)<sub>4</sub>}]<sub><i>n</i></sub> (<b>5</b>), for which the X-ray structure has been determined at 115, 155, 195, 235, and 275 K, addressing the evolution of the metric parameters. Similarly to <b>4</b> and the previously reported CP [(Et<sub>2</sub>S)<sub>3</sub>{Cu<sub>4</sub>(μ<sub>3</sub>-I)<sub>4</sub>}]<sub><i>n</i></sub> (<i>Inorg. Chem.</i> <b>2010</b>, <i>49</i>, 5834), the 1D chain is built upon closed cubanes Cu<sub>4</sub>(μ<sub>3</sub>-I)<sub>4</sub> as secondary building units (SBUs) interconnected via μ-MeSPr ligands. The 0D tetranuclear clusters [(L)<sub>4</sub>{Cu<sub>4</sub>(μ<sub>3</sub>-I)<sub>4</sub>}] [L = EtSPr (<b>6</b>), Pr<sub>2</sub>S (<b>7</b>)] respectively result from the reaction of CuI with EtSPr and <i>n</i>-Pr<sub>2</sub>S. With <i>i</i>-Pr<sub>2</sub>S, the octanuclear cluster [(<i>i</i>-Pr<sub>2</sub>S)<sub>6</sub>{Cu<sub>8</sub>(μ<sub>3</sub>-I)<sub>3</sub>}­(μ<sub>4</sub>-I)<sub>2</sub>}] (<b>8</b>) is formed. An X-ray study has also been performed at five different temperatures for the 2D polymer [(Cu<sub>3</sub>Br<sub>3</sub>)­(MeSEt)<sub>3</sub>]<sub><i>n</i></sub> (<b>9</b>) formed from the reaction between CuBr and MeSEt in heptane. The unprecedented framework of <b>9</b> consists of layers with alternating Cu­(μ<sub>2</sub>-Br)<sub>2</sub>Cu rhomboids, which are connected through two μ-MeSEt ligands to tetranuclear open-cubane Cu<sub>4</sub>Br<sub>4</sub> SBUs. MeSPr forms with CuBr in heptane the 1D CP [(Cu<sub>3</sub>Br<sub>3</sub>)­(MeSPr)<sub>3</sub>]<sub><i>n</i></sub> (<b>10</b>), which is converted to a 2D metal–organic framework [(Cu<sub>5</sub>Br<sub>5</sub>)­(μ<sub>2</sub>-MeSPr)<sub>3</sub>]<sub><i>n</i></sub> (<b>11</b>) incorporating pentanuclear [(Cu<sub>5</sub>(μ<sub>4</sub>-Br)­(μ<sub>2</sub>-Br)] SBUs when recrystallized in MeCN. The thermal stability and photophysical properties of these materials are also reported

    Luminescent P‑Chirogenic Copper Clusters

    No full text
    P-chirogenic clusters of the cubanes [Cu<sub>4</sub>I<sub>4</sub>L<sub>4</sub>] (L = chiral phosphine) were prepared from (+)- and (−)-ephedrine with L = (<i>S</i>)- or (<i>R</i>)-(R)­(Ph)­(<i>i</i>-Pr)P (with R = CH<sub>3</sub> (seven steps) or C<sub>17</sub>H<sub>35</sub> (10 steps)) with e.e. up to 96%. The X-ray structure of [Cu<sub>4</sub>I<sub>4</sub>((<i>R</i>)-(CH<sub>3</sub>)­(Ph)­(<i>i</i>-Pr)­P)<sub>4</sub>] confirmed the cubane structure with average Cu···Cu and Cu···I distances of 2.954 and 2.696 Å, respectively. The cubane structure of the corresponding [Cu<sub>4</sub>I<sub>4</sub>((<i>S</i>)-(CH<sub>3</sub>)­(Ph)­(<i>i</i>-Pr)­P)<sub>4</sub>] was established by the comparison of the X-ray powder diffraction patterns, and the opposite optical activity of the (<i>S</i>)- and (<i>R</i>)-ligand-containing clusters was confirmed by circular dichroism spectroscopy. Small-angle X-ray scattering patterns of one cluster bearing a C<sub>17</sub>H<sub>35</sub> chain exhibit a weak signal at 2θ ∼ 2.8° (<i>d</i> ∼ 31.6 Å), indicating some molecular ordering in the liquid state. The emission spectra exhibit two emission bands, both associated with triplet excited states. These two bands are assigned as follows: the high energy emission is due to a halide-to-ligand charge transfer, XLCT, state mixed with LXCT (ligand-to-halide-charge-transfer). The low energy band is assigned to a cluster-centered excited state. Both emissions are found to be thermochromic with the relative intensity changing between 77 and 298 K for the clusters in methylcyclohexane solution. Several differences are observed in the photophysical parameters, emission quantum yields and lifetimes for R = CH<sub>3</sub> and C<sub>17</sub>H<sub>35</sub>. The measurements of the polarization along the emission indicate that the emission is depolarized, consistent with an approximate tetrahedral geometry of the chromophores
    corecore