1,901 research outputs found

    Dark Matter Halos: The Dynamical Basis of Effective Empirical Models

    Get PDF
    We investigate the dynamical basis of the classic empirical models (specifically, Sersic-Einasto and generalized NFW) that are widely used to describe the distributions of collisionless matter in galaxies. We submit that such a basis is provided by our \alpha-profiles, shown to constitute solutions of the Jeans dynamical equilibrium with physical boundary conditions. We show how to set the parameters of the empirical in terms of the dynamical models; we find the empirical models, and specifically Sersic-Einasto, to constitute a simple and close approximation to the dynamical models. Finally, we discuss how these provide an useful baseline for assessing the impact of the small-scale dynamics that may modulate the density slope in the central galaxy regions.Comment: 11 pages, 2 figures, Accepted by Advances in Astronom

    The Intracluster Plasma: a Universal Pressure Profile?

    Full text link
    The pressure profiles of the Intracluster Plasma in galaxy clusters show a wide variance when observed in X rays at low redshifts z<0.2. We find the profiles to follow two main patterns, featuring either a steep or a shallow shape throughout both core and outskirts. We trace these shapes back to a physical dichotomy of clusters into two classes, marked by either low entropy (LE) or high entropy (HE) throughout. From X-ray observations and Sunyaev-Zel'dovich stacked data at higher 0.2<z<0.4, we elicit evidence of an increasing abundance of HEs relative to LEs. We propose this to constitute a systematic trend toward high z; specifically, we predict the pressure profiles to converge into a truly universal HE-like template for z>0.5. We submit our physical templates and converging trend for further observational tests, in view of the current and upcoming measurements of individual, stacked, and integrated Sunyaev-Zel'dovich signals.Comment: 5 pages, 2 figures. Typos-corrected. Accepted by ApJ

    Probing the Astrophysics of Cluster Outskirts

    Get PDF
    In galaxy clusters the entropy distribution of the IntraCluster Plasma modulates the latter's equilibrium within the Dark Matter gravitational wells, as rendered by our Supermodel. We argue the entropy production at the boundary shocks to be reduced or terminated as the accretion rates of DM and intergalactic gas peter out; this behavior is enforced by the slowdown in the outskirt development at late times, when the Dark Energy dominates the cosmology while the outer wings of the initial perturbation drive the growth. In such conditions, we predict the ICP temperature profiles to steepen into the cluster outskirts. The detailed expectations from our simple formalism agree with the X-ray data concerning five clusters whose temperature profiles have been recently measured out to the virial radius. We predict steep temperature declines to prevail in clusters at low redshift, tempered only by rich environs including adjacent filamentary structures.Comment: 4 pages, 3 figures, uses aa.cls. Typos corrected. Accepted by A&A

    Two phase galaxy formation: The Evolutionary Properties of Galaxies

    Get PDF
    We use our model for the formation and evolution of galaxies within a two-phase galaxy formation scenario, showing that the high-redshift domain typically supports the growth of spheroidal systems, whereas at low redshifts the predominant baryonic growth mechanism is quiescent and may therefore support the growth of a disc structure. Under this framework we investigate the evolving galaxy population by comparing key observations at both low and high-redshifts, finding generally good agreement. By analysing the evolutionary properties of this model, we are able to recreate several features of the evolving galaxy population with redshift, naturally reproducing number counts of massive star-forming galaxies at high redshifts, along with the galaxy scaling relations, star formation rate density and evolution of the stellar mass function. Building upon these encouraging agreements, we make model predictions that can be tested by future observations. In particular, we present the expected evolution to z=2 of the super-massive black hole mass function, and we show that the gas fraction in galaxies should decrease with increasing redshift in a mass, with more and more evolution going to higher and higher masses. Also, the characteristic transition mass from disc to bulge dominated system should decrease with increasing redshift.Comment: 15 pages, 11 figures. Version polished for publication in MNRA

    The Energy Budget of Cosmic Baryons

    Get PDF

    Intracluster Entropy from Joint X-ray and Sunyaev-Zel'dovich Observations

    Get PDF
    The temperature and density of the hot diffuse medium pervading galaxy groups and clusters combine into one significant quantity, the entropy. Here we express the entropy levels and profiles in model-independent forms by joining two observables, the X-ray luminosity and the change in the CMB intensity due to the Sunyaev-Zel'dovich (SZ) effect. Thus we present both global scaling relations for the entropy levels from clusters and groups, and a simple expression yielding the entropy profiles in individual clusters from resolved X-ray surface brightness and SZ spatial distributions. We propose that our approach provides two useful tools for comparing large data samples with models, in order to probe the processes that govern the thermal state of the hot intracluster medium. The feasibility of using such a diagnostic for the entropy is quantitatively assessed, based on current X-ray and upcoming SZ measurements

    Europe: from National-State Borders to Cultural and Religious Identitaries Borders

    Get PDF
    Contemporary Europe is not anymore characterized by traditional National-State borders, but rather by new borders within National-State borders. These new borders arise by cultural, ethnic and religious identity claimed by national and non-national citizens who live in the same public space. Therefore, these new borders are not territorial borders, such as those, which divide a state from another, but rather identitaries borders. The fact that even territorial borders are nowadays less strong is a problem for law. Indeed, law needs a territory, which is a space with borders where the rules of a legal system are in force. The aim of this paper will be to focus on how the law manages the phenomenon of strengthening of the identirary borders in order to understand what are the solutions that states give to identity making claims

    The Universal Rotation Curve of Spiral Galaxies. II The Dark Matter Distribution out to the Virial Radius

    Get PDF
    In the current LambdaCDM cosmological scenario, N-body simulations provide us with a Universal mass profile, and consequently a Universal equilibrium circular velocity of the virialized objects, as galaxies. In this paper we obtain, by combining kinematical data of their inner regions with global observational properties, the Universal Rotation Curve (URC) of disk galaxies and the corresponding mass distribution out to their virial radius. This curve extends the results of Paper I, concerning the inner luminous regions of Sb-Im spirals, out to the edge of the galaxy halos.Comment: In press on MNRAS. 10 pages, 8 figures. The Mathematica code for the figures is available at: http://www.novicosmo.org/salucci.asp Corrected typo

    Self-Similar Dynamical Relaxation of Dark Matter Halos in an Expanding Universe

    Full text link
    We investigate the structure of cold dark matter halos using advanced models of spherical collapse and accretion in an expanding Universe. These base on solving time-dependent equations for the moments of the phase-space distribution function in the fluid approximation; our approach includes non-radial random motions, and most importantly, an advanced treatment of both dynamical relaxation effects that takes place in the infalling matter: phase-mixing associated to shell crossing, and collective collisions related to physical clumpiness. We find self-similar solutions for the spherically-averaged profiles of mass density rho(r), pseudo phase-space density Q(r) and anisotropy parameter beta(r). These profiles agree with the outcomes of state-of-the-art N-body simulations in the radial range currently probed by the latter; at smaller radii, we provide specific predictions. In the perspective provided by our self-similar solutions we link the halo structure to its two-stage growth history, and propose the following picture. During the early fast collapse of the inner region dominated by a few merging clumps, efficient dynamical relaxation plays a key role in producing a closely universal mass density and pseudo phase-space density profiles; in particular, these are found to depend only weakly on the detailed shape of the initial perturbation and the related collapse times. The subsequent inside-out growth of the outer regions feeds on the slow accretion of many small clumps and diffuse matter; thus the outskirts are only mildly affected by dynamical relaxation but are more sensitive to asymmetries and cosmological variance.Comment: 31 pages, 16 figures. Typos corrected. Accepted by Ap
    • …
    corecore