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We investigate the dynamical basis of the classic empirical models (specifically, Sérsic-Einasto and generalized NFW) that are
widely used to describe the distributions of collisionless matter in galaxies. We submit that such a basis is provided by our a-
profiles, shown to constitute solutions of the Jeans dynamical equilibrium with physical boundary conditions. We show how to set
the parameters of the empirical in terms of the dynamical models; we find the empirical models, and specifically Sérsic-Einasto, to
constitute a simple and close approximation to the dynamical models. Finally, we discuss how these provide a useful baseline for
assessing the impact of the small-scale dynamics that may modulate the density slope in the central galaxy regions.

1. Introduction

The classic Sérsic [1] models met a wide and lasting success
as empirical representations of the projected (2-dimensional)
light distributions in spheroidal galaxies (for a review, see
Kormendy et al. [2]). Einasto [3] developed and used a
similar shape to describe in simple terms 3-dimensional
stellar mass profiles.

On the other hand, recent extensive N-body simulations
(e.g., [4-8]) indicate that the Sérsic and Finasto functional
forms also provide good patterns to represent the spherically-
averaged mass distributions in dark matter (DM) halos rang-
ing from galaxies to galaxy clusters. These hold at levels com-
parable to, or even better than the popular NFW formula [9].

Still, no agreed understanding is available to explain the
value in both the real and the virtual worlds of the Sérsic
and Einasto representations (see [2, 10]). Can we identify the
underlying astrophysical basis?

2. Empirical Models

Before addressing the issue, we note that these models
belong to two main families: generalized NFW (see [11-13];
hereafter gNFW) and Sérsic-Einasto (see [10, 14, 15];
hereafter SE).

2.1. Density Runs. The density runs of the SE family may be
represented in the form

PR =7 e, y=p- T (1)
n

Here, quantities are normalized to their value at r_,,

the reference radius where the logarithmic slope y =

—dlogp/dlogr takes on the value 2; typically, in nearby

elliptical galaxies, r_, corresponds to sizes of order 10kpc,

a few times the half-light radius R,.

The parameters 7 and # describe the inner slope and
the middle curvature of the density run, respectively. The
original Einasto profile belongs to this family and is obtained
when 7 = 0. Note, however, that by deprojecting from the
plane of the sky, a Sérsic 2-dimensional run e~s"" with index
n ~ 3-4 (suited for normal ellipticals, see [2]) produces a
cuspy inner run as in (1) with 7 = 1 — 1.19/2n + 0.22/4n* ~
0.8 significantly different from 0 and less than 1, as shown by
Prugniel and Simien [15].

On the DM side, recent simulations (see [4, 6, 8]) only
provide an upper bound 7 < 0.9 for the inner slope. When
the original Einasto profile (with 7 = 0) is adopted, the best-
fit to simulated DM halos obtains for # = 0.2; we will come
back to this value later on.
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In turn, the density runs of the gNFW family may be
written in the following form(In the literature these runs
are sometimes referred to as affy-models, and equivalently
defined via the parameters y = 7, « = 1/, and = 7+ 5¢.):

o 2-T
2-1-n¥’

the parameters 7, #, and & describe the central slope, the
middle curvature, and the outer decline of the density
run, respectively. Note that familiar empirical profiles are
recovered for specific values of the triple (7, #, &); for
example, Plummer’s [16] corresponds to (0,2,2.5), Jaffe’s
[17] to (2,1,2), Herquist’s [11] to (1,1,3), and NFW to
(1,1,2).

(2

1+w )5
W:

0= (T

2.2. Toward a Single Family. The main apparent difference
between SE and gNFW is constituted by the former’s
exponential decline versus the latter’s powerlaw falloff p oc
r=(18) for large r.

On the other hand, (2) is to be considered for large values
of & anyway, since a steep density run in the halo outskirts is
indicated by observations of light distribution in spheroidal
galaxies (other than cDs, see [2]) and of DM distributions
from weak lensing in galaxies and galaxy clusters (e.g., [18—
20]).

The circumstance is easily translated into the formal
statement that the gNFW family converges to the SE for large
&. This is seen on recasting p 7* from (2) in exponential form,
to read

efln[(l+w)/(1+w 71)] - efw (1=r") 5 e—u(?’?fl); (3)
for approximating the middle and last terms, we have used
the circumstance that & > 1 implies w > 1 and so &w =
(2 — 1)/ = u applies. Thus the two families in (1) and (2)
actually become one in this limit.

Thus in the following we focus mainly on the SE family,
and proceed to discuss its dynamical basis in terms of the
Jeans equation.

3. The Dynamical Model

The dynamical model of DM halos hinges upon the radial
Jeans equation that expresses the self-gravitating, equilib-
rium of collisionless matter (see [21]). The Jeans equation

reads
1d(po?) - GM(<r) 2o}

p dr r2 r

(4)

in terms of the density p(r), the related cumulative mass
M(< r) = 45 [y dxx*p(x), and the radial velocity dispersion
02(r). The last term on the r.h.s. describes the effects of
anisotropic random velocities via the standard Binney [22]
parameter 8 = 1 — 0j/0?.

Note that the Jeans equation is designed to describe a
(quasi-)static equilibrium, away from extreme major merger
events like in the case of the Bullet Cluster (see [23]).
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But even in relaxed conditions, solving Jeans requires an
“equation of state,” that is, a functional relation expressing
the DM pressure po? in terms of density (and possibly
radius) only.

3.1. Equation of State. In seeking for such a relation, one
can make contact with the classic theory of the nonlinear
collapse for DM halos in an expanding Universe; here self-
similar arguments play the role of a pivotal pattern (see
[24-26]). This still applies to modern views of the halo
development (e.g., [27-31]), that comprise two stages: an
early collapse that builds up the halo main body via a few
major merger events and sets its phase-space structure by
dynamical relaxation of DM particle orbits; this tails off into
a secular development of the outskirts by smooth accretion
and minor mergers.

The essence of the macroscopic equilibrium is conveyed
by the self-similar scaling 6 oc M/r adding to the geometric
relation p oc M/r*. The macroscopic import of the halo
phase-space structure is conveyed by combining these two
quantities into the “phase-space density” p/o; or equivalently
into the functional K(r) = 02/p*? often referred to as DM
“entropy” (see [24, 26]). For the latter quantity, one easily
derives the scaling K(r) oc rM"? implying

K(r) oc 1, (5)

whence one expects a slope « slightly exceeding 1.

To focus the values of «, in Lapi and Cavaliere [27, 28]
we have developed a full semianalytic treatment of the halo
growth in the standard accelerating Universe (see [32]). We
found constant values of «, that fall within the narrow range
1.25-1.3; on average, such values grow weakly with the mass
of the halo body, from galaxies to rich clusters.

The halo development process has been probed, and the
two-stage view confirmed by intensive N-body simulations
(e.g., [33-39]). These also confirm that (i) a (quasi-)static
macroscopic equilibrium is attained at the end of the fast
collapse and is retained during the subsequent stage of
secular, smooth mass addition; (ii) a persistent feature of
such an equilibrium is constituted by powerlaw correlations
holding in the form ¢2/p*? o r%, although it is still widely
debated whether the radial or the total velocity dispersion
best applies (see also the discussions by [6, 36]).

In building up our dynamical models, we focus on
the quantity K = 0¢2/p*® oc r* that involves the radial
dispersion o7 (see also [40]). Operationally, this provides a
direct expression for the radial pressure term po? = Kp*? oc
r%p>> in the Jeans (4); anisotropies are accounted for by the
last term on the r.h.s., as discussed in Section 3.3 below.

3.2. The DM a-Profiles. In terms of K(r) oc r*, the Jeans
equation may be recast into the compact form

3 v2
y=5<(x+0_3+2ﬁ>, (6)

with y = —dlogp/dlogr representing the logarithmic
density slope and v2 = GM(< r)/r the circular velocity.
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Remarkably, by double differentiation, this integrodiffer-
ential equation for p(r) reduces to a handy second order
differential equation for y (see [40, 41]).

Tackling first the isotropic case f = 0, we recall that
the solution space of (6) spans the range « < 35/27 =
1.296: the specific solution for the upper bound, and the
behaviors of the others have been analytically investigated by
Taylor and Navarro [26], Austin et al. [41], and Dehnen and
McLaughlin [40]. In Lapi and Cavaliere [28], we explicitly
derived the solutions in the full range « = 1.25 — 1.296,
that are marked by a monotonically decreasing run and
satisfy physical boundary conditions: a finite central pressure
or energy density (equivalent to a round minimum of the
gravitational potential) and a steep outer run implying a
finite and rapidly converging (hence a definite) overall mass.
We dubbed a-profiles these physical solutions.

We shall use the following basic features of the latter. In
the halo body at the point 7y, the a-profile is tangent to the
pure powerlaw solution p oc r™7 of the Jeans equation; there
v2/a} oc r271/37% applies, to imply from (6)

Yo = 6 — 3. (7)

This is consistent for « = 1.25 with the self-similar slope.
Note that the point 1y lies in the neighborhood of the radius
r_5 (see Section 2.1); specifically g = 1.74-1.51 r_, holds for
a = 1.25-1.3.

On the other hand, a monotonic density run implies the
term v2/0? oc r27¥37% to vanish at the center; this results in
an inner powerlaw p oc 77 with the slope

Ya = %tx. (8)

This differs from zero as long as the entropy run grows from
the center following K oc r® with a > 0.

Finally, a finite mass implies v2/a7 oc r~1*2//3-% to hold
in the outskirts, so as to yield a typical outer decline p oc r=7
with slope

y=30+a). ©)

This exceeds the value 3 and so constitutes the hallmark
of a rapidly saturating mass; the circumstance makes less
compelling here the role of a virial boundary.

Thus, compared to NFW the inner slope of the dynamical
model is considerably flatter and the outer slope steeper;
compared to the original Finasto profile, the main difference
occurs in the inner regions where the dynamical model is
(moderately) steeper.

3.3. Anisotropy. It is clear from (6) that anisotropies will
steepen the density run for positive 3, and flatten it for
negative 8. The latter condition is expected to prevail in
the inner region, where tangential components develop from
the angular momentum barrier [30, 42]. Moving outwards,
radial motions are expected to prevail, so raising 3 up to
values around 0.5 at r = ry; outwards of this, f3 is expected to
saturate or even decrease, as one enters a region increasingly

populated by DM particles on eccentric orbits with vanishing
radial dispersions at their apocenters (see [24]).

This view is supported by numerical simulations (see [6,
40, 41, 43]), which in detail suggest the average anisotropy-
density slope relation

B(r) = B0) + B [y(r) = yals (10)

to hold with parameters f(0) =~ -0.1, f/ = 0.2, and
the constraint S(r) < 0.5. Note that at all radii the
inequality y(r) = 2f(r) is satisfied; this has been conjectured
to constitute a necessary condition for a self-consistent
spherical model with positive distribution function (see
[44]).

In Lapi and Cavaliere [27], we extended the dynamical
model to such anisotropic conditions in the full range a =
1.25-1.3, inspired by the analysis of Dehnen and McLaughlin
[40] for the upper bound of a. We note that the latter is
now slightly modified to 35/27 — 4$(0)/27 = 1.31; likewise,
the point ry where y = yo = 6 — 3a applies moves slightly
inwards, so that o ~ 1.58 — 1.387_, now holds.

The main outcome, however, is that the density profile is
somewhat flattened at the center relative to the isotropic case;
the inner slope now reads

3 6
Ya = 5(x+5/3(0). (11)
In particular, even a limited central anisotropy (correspond-
ing to values 3(0) =~ —0.1) causes an appreciable flattening
down to y, = 0.63-0.66 for o ~ 1.25-1.3.
On the other hand, we stress that such small phenomeno-
logical anisotropies near the center imply the radial o7 and
the total dispersions 02 = 6?[1 — 2/3/3] to be very close.

4, From Dynamical to Empirical Models

Here we discuss how the parameters of the empirical profiles
(see Section 2) can be set based on our dynamical model
(see Section 3); in such conditions, it will turn out that such
profiles constitute close approximations to the model over a
wide radial range.

4.1. Parameters from Dynamics. First we consider the origi-
nal Einasto profile (z = 0 in (1)), since this has been widely
used in the context of DM halo simulations. Here, 7 is fixed
to 0, and the only free parameter is the curvature #. This we
set by requiring the logarithmic density slope

y(@) =217 (12)
to equal yyp at the point 7. So we find the expression

= 802, (13)
g7

that takes on values # =~ 0.15-0.2; see Tables 1 and 2;
remarkably, these turn out to agree with those derived from
fitting the outcomes of state-of-the-art N-body simulations
in terms of the same Einasto density run, as performed by
Navarro et al. [6].
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FiGure 1: Density profiles in isotropic (a) and anisotropic conditions (b) for the dynamical model and its approximation in terms of
empirical models with the parameters derived in Section 4 and summarized in Tables 1 and 2. The lower panels highlight the corresponding

logarithmic density slopes.

On the other hand, the flat central slope of the Einasto
profile is at variance with the value y, = 3a/5 given by
our dynamical models based on Jeans; to wit, consistency
between pure Einasto and Jeans would require at the center a
flat entropy distribution and a vanishing pressure.

Actually, the simulations quoted in Section 3.1 within
their finite mass resolution provide only an upper limit 7 <
0.9 to the central slope. This grants scope to the full SE family
of (1).

The latter features two parameters, the inner slope
and the middle curvature 7. These we set by requiring the
logarithmic density slope

y@) =1+2-1)7" (14)
to equal y, for 7 — 0, and y, at 7p; so we find
T= Yo
(15)

_ log(yo = ya)/(2 = ya)
il log 7o

Thus we predict the central slope to take on values 7 =
0.6-0.8 and the corresponding curvature parameter to take
on values # = 0.2-0.3; see Tables 1 and 2. It will be worth
fitting the outcomes of N-body simulations based on these
extended SE profiles with 7 > 0.

Finally, we report the corresponding results for the
empirical gNFW family. This features three parameters:
inner slope 7, middle curvature #, and strength of the outer
decline &; these we set by requiring the logarithmic density
slope

[(2-1)/(2—-1—nd]r
2-1)/2-1—nE)]rm -1

y(F) =7+ '15[( (16)

to equal y, for 7 — 0, yp at 7y, and y, for r — 0. So we find

T="%Ya

. log[ (yo = ya) (2= y6)/(yo = ys) (2= ya)]

log 7 o (17)

E:))b_ya~
n

The parameters so determined are listed in Tables 1 and
2 for both the isotropic and the anisotropic conditions.

4.2. Results and Comments. With the parameters focused as
discussed in the previous subsection, Figure 1 illustrates how
the empirical compare with our dynamical models. We plot
the density run of the latter (specifically for the a-profile with
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FIGURE 2: Same as Figure 1 for the profiles of circular velocity, and for the corresponding logarithmic slopes.

a ~ 1.25 suitable to galactic halos), compared to those of
the Einasto, SE, and gNFW models. The left and right panels
refer to isotropic and anisotropic conditions, respectively;
the popular NFW profile is also shown for reference. To
make comparisons easier, we plot in the lower panels the
corresponding logarithmic density slopes.

It turns out that the closest approximation to the
dynamical model is provided by SE, which shares with it
not only the central slope by construction, but also the
body and the outer behaviors. The original Einasto profile
provides an acceptable approximation in the middle and
outer ranges, but not at the center, because of its flatness.
On the other hand, the gNFW family provides an acceptable
approximation in the inner and middle ranges, but not in the
outskirts where its slope is too flat. Finally, the NFW profile
provides an acceptable approximation in the middle range.

Similar conclusions concern the profiles of circular
velocities v2(r) = G M(< r)/r, that are analytically dealt with
in the Appendix and illustrated in Figure 2.

We stress that the handy SE representation is convenient
in analyzing data in several contexts, including the DM parti-
cle annihilation signal expected from the Galactic Center (see
[45]), rotation curves of dwarf and normal spiral galaxies
(see [46]); individual and statistical properties of elliptical
and spiral galaxies (see [47]), strong and weak gravitational
lensing (see [27])—currently observed in clusters (e.g., [48])
and soon in massive elliptical galaxies (see discussion by

[49]) and X-ray emission from the intracluster plasma (see
[50-52]).

5. Discussion

We first stress that the dynamical model (as well as its
approximations in terms of empirical models) is in keeping
with the basic features of standard DM, that is, its cold and
collisionless nature. In fact, it implies 62(r) — 0 for large
r > r_, a behavior expected in the outskirts for cold matter
dominating the potential well.

At the inner end, with decreasing r, we expect o2 (r)
to increase toward a maximum, corresponding to effective
conversion of inflow kinetic into random energy. In fact,
toward the center Jeans requires dlog o?/dlogr = y — GM(<
r)/r? — 7y, to hold as the gravitational force vanishes there,
to the effect that ¢2(r) oc e — 0.

Concerning the collisionless nature of the DM, the
boundary conditions at the center imply a finite, non-zero
pressure (and energy density), while a long collisional mean
free path allows the pressure gradient dp/dr to diverge.
Conversely, with a short mean free path A the pressure
gradient cannot diverge on scales r 2> A, where a finite o2 and
a flatter y apply. In fact, weakly collisional conditions have
been proposed to explain the cored light profiles observed in
many spheroidal galaxies (see [53]).



TaBLE 1: Parameters of empirical models in the isotropic case.

o 1.25 1.27 1.29
Einasto model (1)

n 0.211 0.182 0.152
SE model (1)

T 0.750 0.762 0.774
n 0.327 0.287 0.244
gNFW model (2)

T 0.750 0.762 0.774
n 0.687 0.579 0.473
¢ 3.821 4.564 5.624

TABLE 2: Parameters of empirical models in the anisotropic case.

o 1.25 1.27 1.29
Einasto model (1)

n 0.259 0.226 0.194
SE model (1)

T 0.630 0.642 0.654
n 0.368 0.326 0.285
gNFW model (2)

T 0.630 0.642 0.654
n 0.808 0.688 0.578
& 3.396 4.018 4.812

On approaching the center of a galactic halo, one
expects the basic dynamical model from large-scale Jeans
equilibrium to be altered to an increasing degree by small-
scale dynamics and/or energetics related to baryons. These
processes are specifically related to following issues: transfer
of energy/angular momentum from baryons to DM during
galaxy formation, scouring baryons by the energy feedback
from central active galactic nuclei and any “adiabatic”
contraction of the baryons. Such issues will be briefly
discussed in turn, with a warning that they enter increasingly
debated grounds.

5.1. Energy/Angular Momentum Transfers. Flattening of the
inner density profile may be caused by transfer of energy
and/or angular momentum from the baryons to the DM
during the galaxy formation process (see [54-56]).

In detail, upon transfer of tangential random motions
from the baryons to an initially isotropic DM structure, the
density in the inner region is expected to behave as [56]

p o p2rer 22 yBYI2H G-y B, (18)

Thus for 8 < 0 the profile is flattened relative to the original
ya> down to the point of developing a core for < —y,/2(2 —
ya) = —0.3.

However, a reliable assessment of the amount of angular
momentum transferred from the baryons to the DM is still
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wanting, and would require aimed numerical simulations of
better resolution than presently achieved.

5.2. Other Processes on Inner Scales. Less agreed processes
may affect galactic scales r < 102 pc, for example, at the
formation of a spheroid, central starbursts and a supermas-
sive black hole may easily discharge enough energy (~ 10
erg for a black hole mass M. ~ 10°M,) with sufficient
coupling (2 1%) to blow most of the gaseous baryonic mass
m oc r37%/(3 — y,) out of the gravitational potential well.
This will cause an expansion of the DM and of the stellar
distributions (see [57]), that flattens the central slope.

In addition, binary black hole dynamics following a
substantial merger may eject on longer timescales formed
stars from radii r =~ 10 (M./10% M@)l/(aﬂ'“> pc containing
an overall mass of a few times the black hole’s, and so may
cause a light deficit in some galaxy cores (see [2, 58, 59]). A
full discussion of the issue concerning cored versus cusped
ellipticals is beyond the scope of the present paper.

5.3. Adiabatic Contraction? On the other hand, some steep-
ening of the inner density profile may be induced by any
“adiabatic” contraction of the diffuse star-forming baryons
into a disc-like structure, as proposed by Blumenthal et al.
[60] and Mo et al. [61] but currently under scrutiny, see
Abadi et al. [62].

On the basis of the standard treatments, it is easily shown
that in the inner region an initial powerlaw p(r;) oc r;y is
modified into

p oc r ¥, (19)

this yields typical slopes around 0.9, steeper than the original
ya < 0.78 but still significantly flatter than 1.

However, recent numerical simulations (see discussion
by [62]) suggest that the treatment of adiabatic contraction
leading to (19) is likely to be extreme; actually, in the inner
region the contraction is ineffective and the density slope
hardly modified. Again, highly resolved N-body experiments
are needed to clarify the issue.

6. Conclusions

We have discussed the dynamical basis of the Sérsic-Einasto
empirical models, in terms of well-behaved solutions of the
Jeans equation with physical boundary conditions compris-
ing: a finite central energy density, a closely self-similar body,
and a finite (definite) overall mass.

We find the SE profile to be particularly suitable to
accommodate the general run of the dynamical solution.
Specifically, we have discussed how to tune the parameters
of SE in terms of the dynamical model; in such conditions,
we find the former to constitute a simple and close approxi-
mation to the latter.

The resulting SE profile shares with the dynamical model
the following features: an outer steep decline, hence a definite
overall mass, a closely self-similar body with slope y, =
6 — 3a, and an inner slope around y, = 3a/5, hence



Advances in Astronomy

flatter than —1. The latter slope provides an useful baseline
for discussing alterations of the inner behavior caused by
additional baryonic processes.

In conclusion, we submit that the dynamical models
discussed here, namely, the a-profiles, provide the astrophys-
ical basis for understanding the empirical success of the SE
profiles in fitting the real and the virtual observables, from
galaxies to galaxy clusters.
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