10 research outputs found

    Umbrella : A deployable SDN-enabled IXP switching fabric

    Get PDF
    Software Defined internet eXchange Points (SDXs) are a promising solution to the long-standing limitations and problems of interdomain routing. While proposed SDX architectures have improved the scalability of the control plane, these solutions have ignored the underlying fabric upon which they should be deployed. This work makes the case for a new fabric architecture that proposes stronger control and data plane separation

    Rethinking IXPs' architecture in the age of SDN

    Get PDF
    © 2018 IEEE. Software-defined Internet eXchange points (SDXs) are a promising solution to the long-standing limitations and problems of interdomain routing. While the proposed SDX architectures have improved the scalability of the control plane, these solutions have ignored the underlying fabric upon which they should be deployed. In this paper, we present Umbrella, a software-defined interconnection fabric that complements and enhances those architectures. Umbrella is a switching fabric architecture and management approach that improves the overall robustness, limiting control plane dependence, and suitable for the topology of any existing Internet eXchange Point (IXP). We validate Umbrella through a real-world deployment on two production IXPs, TouSIX and NSPIXP-3, and demonstrate its use in practice, sharing our experience of the challenges faced

    The 2020 UV emitter roadmap

    Get PDF
    Solid state UV emitters have many advantages over conventional UV sources. The (Al,In,Ga)N material system is best suited to produce LEDs and laser diodes from 400 nm down to 210 nm—due to its large and tuneable direct band gap, n- and p-doping capability up to the largest bandgap material AlN and a growth and fabrication technology compatible with the current visible InGaN-based LED production. However AlGaN based UV-emitters still suffer from numerous challenges compared to their visible counterparts that become most obvious by consideration of their light output power, operation voltage and long term stability. Most of these challenges are related to the large bandgap of the materials. However, the development since the first realization of UV electroluminescence in the 1970s shows that an improvement in understanding and technology allows the performance of UV emitters to be pushed far beyond the current state. One example is the very recent realization of edge emitting laser diodes emitting in the UVC at 271.8 nm and in the UVB spectral range at 298 nm. This roadmap summarizes the current state of the art for the most important aspects of UV emitters, their challenges and provides an outlook for future developments
    corecore