154 research outputs found

    Brain insulin resistance triggers early onset Alzheimer disease in Down syndrome

    Get PDF
    Dysregulation of insulin signaling pathway with reduced downstream neuronal survival and plasticity mechanisms is a fundamental abnormality observed in Alzheimer's disease (AD) brain. This phenomenon, known as brain insulin resistance, is associated with poor cognitive performance and is driven by the uncoupling of insulin receptor (IR) from its direct substrate (IRS1). Considering that Down syndrome (DS) and AD neuropathology share many common features, we investigated metabolic aspects of neurodegeneration, i.e., brain insulin resistance, in DS and whether it would contribute to early onset AD in DS population. Changes of levels and activation of main brain proteins belonging to the insulin signaling pathway (i.e., IR, IRS1, PTEN, GSK3β, PKCζ, AS160, GLUT4) were evaluated. Furthermore, we analyzed whether changes of these proteins were associated with alterations of: (i) proteins regulating brain energy metabolism; (ii) APP cleavage; and (ii) regulation of synaptic plasticity mechanisms in post-mortem brain samples collected from people with DS before and after the development of AD pathology (DSAD) compared with their age-matched controls. We found that DS cases were characterized by key markers of brain insulin resistance (reduced IR and increased IRS1 inhibition) early in life. Furthermore, downstream from IRS1, an overall uncoupling among the proteins of insulin signaling was observed. Dysregulated brain insulin signaling was associated with reduced hexokinase II (HKII) levels and proteins associated with mitochondrial complexes levels as well as with reduced levels of syntaxin in DS cases. Tellingly, these alterations precede the development of AD neuropathology and clinical presentations in DS. We propose that markers of brain insulin resistance rise earlier with age in DS compared with the general population and may contribute to the cognitive impairment associated with the early development of AD in DS

    BVR-A deficiency leads to autophagy impairment through the dysregulation of AMPK/mTOR axis in the brain—Implications for neurodegeneration

    Get PDF
    Biliverdin reductase-A (BVR-A) impairment is associated with increased accumulation of oxidatively-damaged proteins along with the impairment of autophagy in the brain during neurodegenerative disorders. Reduced autophagy inhibits the clearance of misfolded proteins, which then form neurotoxic aggregates promoting neuronal death. The aim of our study was to clarify the role for BVR-A in the regulation of the mTOR/autophagy axis by evaluating age-associated changes (2, 6 and 11 months) in cerebral cortex samples collected from BVR-A knock-out (BVR-A−/−) and wild-type (WT) mice. Our results show that BVR-A deficiency leads to the accumulation of oxidatively-damaged proteins along with mTOR hyper-activation in the cortex. This process starts in juvenile mice and persists with aging. mTOR hyper-activation is associated with the impairment of autophagy as highlighted by reduced levels of Beclin-1, LC3β, LC3II/I ratio, Atg5–Atg12 complex and Atg7 in the cortex of BVR-A−/− mice. Furthermore, we have identified the dysregulation of AMP-activated protein kinase (AMPK) as a critical event driving mTOR hyper-activation in the absence of BVR-A. Overall, our results suggest that BVR-A is a new player in the regulation of autophagy, which may be targeted to arrive at novel therapeutics for diseases involving impaired autophagy

    The dysregulation of OGT/OGA cycle mediates Tau and APP neuropathology in down syndrome

    Get PDF
    Protein O-GlcNAcylation is a nutrient-related post-translational modification that, since its discovery some 30 years ago, has been associated with the development of neurodegenerative diseases. As reported in Alzheimer’s disease (AD), flaws in the cerebral glucose uptake translate into reduced hexosamine biosynthetic pathway flux and subsequently lead to aberrant protein O-GlcNAcylation. Notably, the reduction of O-GlcNAcylated proteins involves also tau and APP, thus promoting their aberrant phosphorylation in AD brain and the onset of AD pathological markers. Down syndrome (DS) individuals are characterized by the early development of AD by the age of 60 and, although the two conditions present the same pathological hallmarks and share the alteration of many molecular mechanisms driving brain degeneration, no evidence has been sought on the implication of O-GlcNAcylation in DS pathology. Our study aimed to unravel for the first time the role of protein O-GlcNacylation in DS brain alterations positing the attention of potential trisomy-related mechanisms triggering the aberrant regulation of OGT/OGA cycle. We demonstrate the disruption of O-GlcNAcylation homeostasis, as an effect of altered OGT and OGA regulatory mechanism, and confirm the relevance of O-GlcNAcylation in the appearance of AD hallmarks in the brain of a murine model of DS. Furthermore, we provide evidence for the neuroprotective effects of brain-targeted OGA inhibition. Indeed, the rescue of OGA activity was able to restore protein O-GlcNAcylation, and reduce AD-related hallmarks and decreased protein nitration, possibly as effect of induced autophagy

    Multi-Targeting Bioactive Compounds Extracted from Essential Oils as Kinase Inhibitors

    Get PDF
    Essential oils (EOs) are popular in aromatherapy, a branch of alternative medicine that claims their curative effects. Moreover, several studies reported EOs as potential anti-cancer agents by inducing apoptosis in different cancer cell models. In this study, we have considered EOs as a potential resource of new kinase inhibitors with a polypharmacological profile. On the other hand, computational methods offer the possibility to predict the theoretical activity profile of ligands, discovering dangerous off-targets and/or synergistic effects due to the potential multi-target action. With this aim, we performed a Structure-Based Virtual Screening (SBVS) against X-ray models of several protein kinases selected from the Protein Data Bank (PDB) by using a chemoinformatics database of EOs. By evaluating theoretical binding affinity, 13 molecules were detected among EOs as new potential kinase inhibitors with a multi-target profile. The two compounds with higher percentages in the EOs were studied more in depth by means Induced Fit Docking (IFD) protocol, in order to better predict their binding modes taking into account also structural changes in the receptor. Finally, given its good binding affinity towards five different kinases, cinnamyl cinnamate was biologically tested on different cell lines with the aim to verify the antiproliferative activity. Thus, this work represents a starting point for the optimization of the most promising EOs structure as kinase inhibitors with multi-target feature

    POS1247 CLINICAL FEATURES AND OUTCOMES OF COVID-19 IN PATIENTS WITH IGG4-RELATED DISEASE. A COLLABORATIVE EUROPEAN MULTI-CENTRE STUDY

    Get PDF
    Background:Coronavirus disease 2019 (COVID-19) is a pandemic-spread systemic infectious disease with prominent respiratory manifestations and significant associated morbidity and mortality. Elderly people are most significantly affected with mortality ranging from 2.4% (age 60-69) to 19.6% (age>80) in European Countries. The prevalence of COVID-19 and of its complications in patients with immune-mediated disorders, remains unclear. The frequency and impact of COVID-19 on patients with IgG4-related diease (IgG4-RD), many of whom are on concurrent immunosuppression has not been addressed.Objectives:To assess the epidemiological and clinical relevance of COVID-19 in patients with IgG4-RD.Methods:This is a multi-centre retrospective observational study of IgG4-RD patients from France, Italy, Spain and the United Kingdom. Demographics, comorbidities, IgG4-RD features, current and past treatment along with COVID-19-suggestive symptoms and COVID-19 diagnoses from February 2020 to January 2021 were recorded by means of direct or phone interviews. Patients with reverse-transcriptase polymerase chain reaction-confirmed (cCOVID) or presumed COVID-19 based on clinical, serological or imaging features (pCOVID) were pooled for analysis (totCOVID) and compared to patients who were not diagnosed with COVID-19. Inter-group comparison of categorical and quantitative variables were performed by using the chi-square test with Fisher's correction and the Mann-Whitney's test respectively. Data are expressed as median (interquartile range) unless otherwise specified.Results:A total of 305 patients [71% males, median age 64 (54-74) years] were studied. Pancreato-biliary disease was the most frequently observed IgG4-RD phenotype (39%). Fifty-one percent of patients were taking corticosteroids at time of interview and 30% were on biological or conventional immunosuppressants. Thirty-two totCOVID cases (23 cCOVID, nine pCOVID) were identified: 11/32 were hospitalised, two needed intensive care and four (13%; 3/4 aged >80 years) died. Having one or more infected family members was a risk factor for COVID-19 in patients with IgG4-RD (OR=19.9; p20mg) or rituximab administration.Conclusion:The prevalence and course of COVID-19 in IgG4-RD patients are similar to those of the general population of the same age, with no evident impact of disease- or treatment-related factors to the basal infectious risk. Effective public health countermeasures might be beneficial for patients with IgG4RD.References:[1]European Centre for Disease Prevention and Control (ECDC): https://covid19-surveillance-report.ecdc.europa.eu/[2]Yang H, Ann Rheum Dis, 2021Disclosure of Interests:Giuseppe Alvise Ramirez: None declared, Marco Lanzillotta: None declared, Mikael Ebbo: None declared, Andreu Fernandez-Codina Consultant of: consulting fees from Atheneum Consulting, Gaia Mancuso: None declared, Fernando Martínez-Valle: None declared, Olimpia Orozco-Galvez: None declared, Nicolas Schleinitz: None declared, Lorenzo Dagna Consultant of: Abbvie, Amgen, Biogen, BristolMyers Squibb, Celltrion, Galapagos, GlaxoSmithKline, Novartis, Pfizer, Roche, Sanofi-Genzyme, and SOBI, Grant/research support from: The Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR) received unresctricted research/educational grants from Abbvie, Bristol-Myers Squibb, Celgene, GlaxoSmithKline,Janssen, Merk Sharp & Dohme, Mundipharma Pharmaceuticals, Novartis, Pfizer, Roche, Sanofi Genzyme, and SOBI, Emma L. Culver: None declared, Emanuel Della Torre: None declare

    High-fat diet leads to reduced protein o-glcnacylation and mitochondrial defects promoting the development of alzheimer\u2019s disease signatures

    Get PDF
    The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer\u2019s disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process

    Correction : Long term natural history data in ambulant boys with Duchenne muscular dystrophy : 36-month changes

    Get PDF
    The 6 minute walk test has been recently chosen as the primary outcome measure in international multicenter clinical trials in Duchenne muscular dystrophy ambulant patients. The aim of the study was to assess the spectrum of changes at 3 years in the individual measures, their correlation with steroid treatment, age and 6 minute walk test values at baseline. Ninety-six patients from 11 centers were assessed at baseline and 12, 24 and 36 months after baseline using the 6 minute walk test and the North Star Ambulatory Assessment. Three boys (3%) lost the ability to perform the 6 minute walk test within 12 months, another 13 between 12 and 24 months (14%) and 11 between 24 and 36 months (12%). The 6 minute walk test showed an average overall decline of 1215.8 (SD 77.3) m at 12 months, of 1258.9 (SD 125.7) m at 24 months and 12104.22 (SD 146.2) m at 36 months. The changes were significantly different in the two baseline age groups and according to the baseline 6 minute walk test values (below and above 350 m) (p<0.001). The changes were also significantly different according to steroid treatment (p\u200a=\u200a0.01). Similar findings were found for the North Star Ambulatory Assessment. These are the first 36 month longitudinal data using the 6 minute walk test and North Star Ambulatory Assessment in Duchenne muscular dystrophy. Our findings will help not only to have a better idea of the progression of the disorder but also provide reference data that can be used to compare with the results of the long term extension studies that are becoming available

    Upper limb function in Duchenne muscular dystrophy: 24 month longitudinal data.

    Get PDF
    The aim of the study was to establish 24 month changes in upper limb function using a revised version of the performance of upper limb test (PUL 2.0) in a large cohort of ambulant and non-ambulant boys with Duchenne muscular dystrophy and to identify possible trajectories of progression. Of the 187 patients studied, 87 were ambulant (age range: 7-15.8 years), and 90 non-ambulant (age range: 9.08-24.78). The total scores changed significantly over time (p&lt;0.001). Non-ambulant patients had lower total scores at baseline (mean 19.7) when compared to the ambulant ones (mean 38.4). They also had also a bigger decrease in total scores over 24 months compared to the ambulant boys (4.36 vs 2.07 points). Multivariate model analysis showed that the Performance of Upper Limb changes reflected the entry level and ambulation status, that were independently associated to the slope of Performance of Upper Limb changes. This information will be of help both in clinical practice and at the time of designing clinical trials

    1B/(−)IRE DMT1 Expression during Brain Ischemia Contributes to Cell Death Mediated by NF-κB/RelA Acetylation at Lys310

    Get PDF
    The molecular mechanisms responsible for increasing iron and neurodegeneration in brain ischemia are an interesting area of research which could open new therapeutic approaches. Previous evidence has shown that activation of nuclear factor kappa B (NF-κB) through RelA acetylation on Lys310 is the prerequisite for p50/RelA-mediated apoptosis in cellular and animal models of brain ischemia. We hypothesized that the increase of iron through a NF-κB-regulated 1B isoform of the divalent metal transporter-1 (1B/DMT1) might contribute to post-ischemic neuronal damage. Both in mice subjected to transient middle cerebral artery occlusion (MCAO) and in neuronally differentiated SK-N-SH cells exposed to oxygen-glucose-deprivation (OGD), 1A/DMT1 was only barely expressed while the 1B/DMT1 without iron-response-element (−IRE) protein and mRNA were early up-regulated. Either OGD or over-expression of 1B/(−)IRE DMT1 isoform significantly increased iron uptake, as detected by total reflection X-ray fluorescence, and iron-dependent cell death. Iron chelation by deferoxamine treatment or (−)IRE DMT1 RNA silencing displayed significant neuroprotection against OGD which concomitantly decreased intracellular iron levels. We found evidence that 1B/(−)IRE DMT1 was a target gene for RelA activation and acetylation on Lys310 residue during ischemia. Chromatin immunoprecipitation analysis of the 1B/DMT1 promoter showed there was increased interaction with RelA and acetylation of H3 histone during OGD exposure of cortical neurons. Over-expression of wild-type RelA increased 1B/DMT1 promoter-luciferase activity, the (−)IRE DMT1 protein, as well as neuronal death. Expression of the acetylation-resistant RelA-K310R construct, which carried a mutation from lysine 310 to arginine, but not the acetyl-mimic mutant RelA-K310Q, down-regulated the 1B/DMT1 promoter, consequently offering neuroprotection. Our data showed that 1B/(−)IRE DMT1 expression and intracellular iron influx are early downstream responses to NF-κB/RelA activation and acetylation during brain ischemia and contribute to the pathogenesis of stroke-induced neuronal damage
    • …
    corecore