7,939 research outputs found

    Photospheric activity, rotation, and star-planet interaction of the planet-hosting star CoRoT-6

    Full text link
    The CoRoT satellite has recently discovered a hot Jupiter that transits across the disc of a F9V star called CoRoT-6 with a period of 8.886 days. We model the photospheric activity of the star and use the maps of the active regions to study stellar differential rotation and the star-planet interaction. We apply a maximum entropy spot model to fit the optical modulation as observed by CoRoT during a uninterrupted interval of about 140 days. Photospheric active regions are assumed to consist of spots and faculae in a fixed proportion with solar-like contrasts. Individual active regions have lifetimes up to 30-40 days. Most of them form and decay within five active longitudes whose different migration rates are attributed to the stellar differential rotation for which a lower limit of \Delta \Omega / \Omega = 0.12 \pm 0.02 is obtained. Several active regions show a maximum of activity at a longitude lagging the subplanetary point by about 200 degrees with the probability of a chance occurrence being smaller than 1 percent. Our spot modelling indicates that the photospheric activity of CoRoT-6 could be partially modulated by some kind of star-planet magnetic interaction, while an interaction related to tides is highly unlikely because of the weakness of the tidal force.Comment: 9 pages, 7 figures, accepted to Astronomy & Astrophysic

    Excitation of the GDR and the Compressional Isoscalar Dipole State by alpha scattering

    Full text link
    The excitation of the isovector giant dipole resonance (GDR) by alpha scattering is investigated as a method of probing the neutron excess in exotic nuclei. DWBA calculations are presented for 28O and 70Ca and the interplay of Coulomb and nuclear excitation is discussed. Since the magnitude of the Coulomb excitation amplitude is strongly influenced by the Q-value, the neutron excess plays an important role, as it tends to lower the energy of the GDR. The excitation of the compressional isoscalar dipole state in 70Ca by alpha scattering is also investigated. It is shown that the population of this latter state may be an even more sensitive probe of the neutron skin than the isovector GDR.Comment: 7 pages, 5 figures, Latex2

    Excitation of Pygmy Dipole Resonance in neutron-rich nuclei via Coulomb and nuclear fields

    Full text link
    We study the nature of the low-lying dipole strength in neutron-rich nuclei, often associated to the Pygmy Dipole Resonance. The states are described within the Hartree-Fock plus RPA formalism, using different parametrizations of the Skyrme interaction. We show how the information from combined reactions processes involving the Coulomb and different mixtures of isoscalar and isovector nuclear interactions can provide a clue to reveal the characteristic features of these states.Comment: 9 Pages, 8 figures, contribution to International Symposium On Nuclear Physics, December 8-12, 2009,Bhabha Atomic Research Centre, Mumbai, Indi

    A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae

    Get PDF
    All authors are with the Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA -- Hal S. Alper is with the Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA -- Amanda M. Lanza Current Address: Bristol-Myers Squibb, Biologics Development, 35 South Street, Hopkinton, MA 01748, USABackground: Heterologous gene expression is an important tool for synthetic biology that enables metabolic engineering and the production of non-natural biologics in a variety of host organisms. The translational efficiency of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host organism. However, traditional approaches for optimization neglect to take into account many factors known to influence synonymous codon distributions. Results: Here we define an alternative approach for codon optimization that utilizes systems level information and codon context for the condition under which heterologous genes are being expressed. Furthermore, we utilize a probabilistic algorithm to generate multiple variants of a given gene. We demonstrate improved translational efficiency using this condition-specific codon optimization approach with two heterologous genes, the fluorescent protein-encoding eGFP and the catechol 1,2-dioxygenase gene CatA, expressed in S. cerevisiae. For the latter case, optimization for stationary phase production resulted in nearly 2.9-fold improvements over commercial gene optimization algorithms. Conclusions: Codon optimization is now often a standard tool for protein expression, and while a variety of tools and approaches have been developed, they do not guarantee improved performance for all hosts of applications. Here, we suggest an alternative method for condition-specific codon optimization and demonstrate its utility in Saccharomyces cerevisiae as a proof of concept. However, this technique should be applicable to any organism for which gene expression data can be generated and is thus of potential interest for a variety of applications in metabolic and cellular engineering.Chemical EngineeringInstitute for Cellular and Molecular [email protected]

    Microscopic description of Coulomb and nuclear excitation of multiphonon states in 40^{40}Ca + 40^{40}Ca collisions

    Get PDF
    We calculate the inelastic scattering cross sections to populate one- and two-phonon states in heavy ion collisions with both Coulomb and nuclear excitations. Starting from a microscopic approach based on RPA, we go beyond it in order to treat anharmonicities and non-linear terms in the exciting field. These anharmonicities and non-linearities are shown to have important effects on the cross sections both in the low energy part of the spectrum and in the energy region of the Double Giant Quadrupole Resonance. By properly introducing an optical potential the inelastic cross section is calculated semiclassically by integrating the excitation probability over all impact parameters. A satisfactory agreement with the experimental results is obtained.Comment: 20 pages, 2 figures, revtex, to be published in Phys. Rev.

    Daily variability of Ceres' Albedo detected by means of radial velocities changes of the reflected sunlight

    Get PDF
    Bright features have been recently discovered by Dawn on Ceres, which extend previous photometric and Space Telescope observations. These features should produce distortions of the line profiles of the reflected solar spectrum and therefore an apparent radial velocity variation modulated by the rotation of the dwarf planet. Here we report on two sequences of observations of Ceres performed in the nights of 31 July, 26-27 August 2015 by means of the high-precision HARPS spectrograph at the 3.6-m La Silla ESO telescope. The observations revealed a quite complex behaviour which likely combines a radial velocity modulation due to the rotation with an amplitude of approx +/- 6 m/s and an unexpected diurnal effect. The latter changes imply changes in the albedo of Occator's bright features due to the blaze produced by the exposure to solar radiation. The short-term variability of Ceres' albedo is on timescales ranging from hours to months and can both be confirmed and followed by means of dedicated radial velocity observations.Comment: 5 pag, 1fig, two tables, MNRAS Letters 201

    Isoscalar and isovector dipole excitations: Nuclear properties from low-lying states and from the isovector giant dipole resonance

    Get PDF
    Abstract This review paper concerns the research devoted to the study of the properties of dipole excitations in nuclei. The main focus is on questions related to isospin effects in these types of excitations. Particular attention is given to the experimental and theoretical efforts made to understand the nature and the specific structure of the low-lying dipole states known as the Pygmy Dipole Resonance (PDR). The main experimental methods employed in the study of the PDR are reviewed as well as the most interesting theoretical aspects. The main features of the experiments and of theoretical models are reported with special emphasis on the reaction cross sections populating the dipole states. Results are organized for nuclei according to different mass regions. The knowledge of the isovector dipole response as well as its low energy part is important in order to deduce the nuclear polarizability as accurate as possible. This issue is discussed in this paper together with the connection with the neutron skin and the nuclear equation of state. The important role played by the dipole response to deduce other physical quantities of general interest is discussed in the last two chapters. One concerns the level density and the other the isospin mixing in nuclei at finite temperature and its relation with beta decay

    Excitations of pygmy dipole resonances in exotic and stable nuclei via Coulomb and nuclear fields

    Get PDF
    We study heavy-ion inelastic scattering processes in neutron-rich nuclei including the full response to the different multipolarities. Among these we focus in particular on the excitation of low-lying dipole states commonly associated to the pygmy dipole resonance. The multipole response is described within the Hartree-Fock plus RPA formalism with Skyrme interaction. We show how the combined information from reactions processes involving the Coulomb and different mixtures of isoscalar and isovector nuclear interactions can provide a clue to reveal the characteristic features of these states. We have performed calculation for the excitation of 132Sn generated in the reactions with 4He, 40Ca, and 48Ca at several incident energies, as well as for the system 17O +208Pb. Our results suggest that the investigation of the PDR states can be better carried out at low incident energies (below 50 MeV/nucleon). In fact, at these energies the PDR peak is relatively stronger than the giant dipole resonance (GDR) one and the narrow width of the low-lying quadrupole and octupole states should not blur its presence.Ministerio de Ciencia e Innovación (España) y FEDER FPA2009-07653 FIS2008-04189Programa Consolider-Ingenio 2010 (España) CSD2007-00042Junta de Andalucía P07-FQM-02894 FQM16
    corecore