699 research outputs found

    The Hottest Horizontal-Branch Stars in omega Centauri - Late Hot Flasher vs. Helium Enrichment

    Full text link
    UV observations of some massive globular clusters uncovered a significant population of very hot stars below the hot end of the horizontal branch (HB), the so-called blue hook stars. This feature might be explained either as results of the late hot flasher scenario where stars experience the helium flash while on the white dwarf cooling curve or by the progeny of the helium-enriched sub-population recently postulated to exist in some clusters. Moderately high resolution spectra of stars at the hot end of the blue HB in omega Cen were analysed for atmospheric parameters and abundances using LTE and Non-LTE model atmospheres. In the temperature range 30,000K to 50,000K we find that 35% of our stars are helium-poor (log(n_He/n_H) < -2), 51% have solar helium abundance within a factor of 3 (-1.5 <= log(n_He/n_H) <= -0.5) and 14% are helium-rich (log(n_He/n_H)> -0.4). We also find carbon enrichment in step with helium enrichment, with a maximum carbon enrichment of 3% by mass. At least 14% of the hottest HB stars in omega Cen show helium abundances well above the highest predictions from the helium enrichment scenario (Y = 0.42 corresponding to log(n_He/n_H) ~ -0.74). In addition, the most helium-rich stars show strong carbon enrichment as predicted by the late hot flasher scenario. We conclude that the helium-rich HB stars in omega Cen cannot be explained solely by the helium-enrichment scenario invoked to explain the blue main sequence. (Abridged)Comment: 4 pages, 3 figures, uses aa.cls (enclosed), accepted as A&A Lette

    Incoherent dynamics in neutron-matter interaction

    Get PDF
    Coherent and incoherent neutron-matter interaction is studied inside a recently introduced approach to subdynamics of a macrosystem. The equation describing the interaction is of the Lindblad type and using the Fermi pseudopotential we show that the commutator term is an optical potential leading to well-known relations in neutron optics. The other terms, usually ignored in optical descriptions and linked to the dynamic structure function of the medium, give an incoherent contribution to the dynamics, which keeps diffuse scattering and attenuation of the coherent beam into account, thus warranting fulfilment of the optical theorem. The relevance of this analysis to experiments in neutron interferometry is briefly discussed.Comment: 15 pages, revtex, no figures, to appear in Phys. Rev.

    Completely Positive Quantum Dissipation

    Get PDF
    A completely positive master equation describing quantum dissipation for a Brownian particle is derived starting from microphysical collisions, exploiting a recently introduced approach to subdynamics of a macrosystem. The obtained equation can be cast into Lindblad form with a single generator for each Cartesian direction. Temperature dependent friction and diffusion coefficients for both position and momentum are expressed in terms of the collision cross-section.Comment: 8 pages, revtex, no figure

    Dynamical Semigroup Description of Coherent and Incoherent Particle-Matter Interaction

    Get PDF
    The meaning of statistical experiments with single microsystems in quantum mechanics is discussed and a general model in the framework of non-relativistic quantum field theory is proposed, to describe both coherent and incoherent interaction of a single microsystem with matter. Compactly developing the calculations with superoperators, it is shown that the introduction of a time scale, linked to irreversibility of the reduced dynamics, directly leads to a dynamical semigroup expressed in terms of quantities typical of scattering theory. Its generator consists of two terms, the first linked to a coherent wavelike behaviour, the second related to an interaction having a measuring character, possibly connected to events the microsystem produces propagating inside matter. In case these events breed a measurement, an explicit realization of some concepts of modern quantum mechanics ("effects" and "operations") arises. The relevance of this description to a recent debate questioning the validity of ordinary quantum mechanics to account for such experimental situations as, e.g., neutron-interferometry, is briefly discussed.Comment: 22 pages, latex, no figure

    Test Particle in a Quantum Gas

    Get PDF
    A master equation with a Lindblad structure is derived, which describes the interaction of a test particle with a macroscopic system and is expressed in terms of the operator valued dynamic structure factor of the system. In the case of a free Fermi or Bose gas the result is evaluated in the Brownian limit, thus obtaining a single generator master equation for the description of quantum Brownian motion in which the correction due to quantum statistics is explicitly calculated. The friction coefficients for Boltzmann and Bose or Fermi statistics are compared.Comment: 9 pages, revtex, no figure

    Studying the evolution of galaxies in compact groups over the past 3 Gyr - II. The importance of environment in the suppression of star formation

    Get PDF
    We present an in depth study on the evolution of galaxy properties in compact groups over the past 3 Gyr. We are using the largest multi-wavelength sample to-date, comprised 1770 groups (containing 7417 galaxies), in the redshift range of 0.01<z<0.23. To derive the physical properties of the galaxies we rely on ultraviolet (UV)-to-infrared spectral energy distribution modeling, using CIGALE. Our results suggest that during the 3 Gyr period covered by our sample, the star formation activity of galaxies in our groups has been substantially reduced (3-10 times). Moreover, their star formation histories as well as their UV-optical and mid-infrared colors are significantly different from those of field and cluster galaxies, indicating that compact group galaxies spend more time transitioning through the green valley. The morphological transformation from late-type spirals into early-type galaxies occurs in the mid-infrared transition zone rather than in the UV-optical green valley. We find evidence of shocks in the emission line ratios and gas velocity dispersions of the late-type galaxies located below the star forming main sequence. Our results suggest that in addition to gas stripping, turbulence and shocks might play an important role in suppressing the star formation in compact group galaxies.Comment: (Accepted for publication in MNRAS, date of submission November 18, 2015

    Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra

    No full text
    International audienceSubmicron ambient aerosol was characterized in summer 2005 at an urban background site in Zurich, Switzerland, during a three-week measurement campaign. Highly time-resolved samples of non-refractory aerosol components were analyzed with an Aerodyne aerosol mass spectrometer (AMS). Positive matrix factorization (PMF) was used for the first time for AMS data to identify the main components of the total organic aerosol and their sources. The PMF retrieved factors were compared to measured reference mass spectra and were correlated with tracer species of the aerosol and gas phase measurements from collocated instruments. Six factors were found to explain virtually all variance in the data and could be assigned either to sources or to aerosol components such as oxygenated organic aerosol (OOA). Our analysis suggests that at the measurement site only a small (1 originates from freshly emitted fossil fuel combustion. Other primary sources identified to be of similar or even higher importance are charbroiling (10?15%) and wood burning (~10%), along with a minor source interpreted to be influenced by food cooking (6%). The fraction of all identified primary sources is considered as primary organic aerosol (POA). This interpretation is supported by calculated ratios of the modelled POA and measured primary pollutants such as elemental carbon (EC), NOx, and CO, which are in good agreement to literature values. A high fraction (60?69%) of the measured organic aerosol mass is OOA which is interpreted mostly as secondary organic aerosol (SOA). This oxygenated organic aerosol can be separated into a highly aged fraction, OOA I, (40?50%) with low volatility and a mass spectrum similar to fulvic acid, and a more volatile and probably less processed fraction, OOA II (on average 20%). This is the first publication of a multiple component analysis technique to AMS organic spectral data and also the first report of the OOA II component

    The Ultraviolet Spectrum and Physical Properties of the Mass Donor Star in HD 226868 = Cygnus X-1

    Full text link
    We present an examination of high resolution, ultraviolet spectroscopy from Hubble Space Telescope of the photospheric spectrum of the O-supergiant in the massive X-ray binary HD 226868 = Cyg X-1. We analyzed this and ground-based optical spectra to determine the effective temperature and gravity of the O9.7 Iab supergiant. Using non-local thermodynamic equilibrium (non-LTE), line blanketed, plane parallel models from the TLUSTY grid, we obtain T_eff = 28.0 +/- 2.5kK and log g > 3.00 +/- 0.25, both lower than in previous studies. The optical spectrum is best fit with models that have enriched He and N abundances. We fit the model spectral energy distribution for this temperature and gravity to the UV, optical, and IR fluxes to determine the angular size of and extinction towards the binary. The angular size then yields relations for the stellar radius and luminosity as a function of distance. By assuming that the supergiant rotates synchronously with the orbit, we can use the radius - distance relation to find mass estimates for both the supergiant and black hole as a function of the distance and the ratio of stellar to Roche radius. Fits of the orbital light curve yield an additional constraint that limits the solutions in the mass plane. Our results indicate masses of 23^{+8}_{-6} M_sun for the supergiant and 11^{+5}_{-3} M_sun for the black hole.Comment: ApJ in pres

    A hydrogen beam to characterize the ASACUSA antihydrogen hyperfine spectrometer

    Full text link
    The antihydrogen programme of the ASACUSA collaboration at the antiproton decelerator of CERN focuses on Rabi-type measurements of the ground-state hyperfine splitting of antihydrogen for a test of the combined Charge-Parity-Time symmetry. The spectroscopy apparatus consists of a microwave cavity to drive hyperfine transitions and a superconducting sextupole magnet for quantum state analysis via Stern-Gerlach separation. However, the small production rates of antihydrogen forestall comprehensive performance studies on the spectroscopy apparatus. For this purpose a hydrogen source and detector have been developed which in conjunction with ASACUSA's hyperfine spectroscopy equipment form a complete Rabi experiment. We report on the formation of a cooled, polarized, and time modulated beam of atomic hydrogen and its detection using a quadrupole mass spectrometer and a lock-in amplification scheme. In addition key features of ASACUSA's hyperfine spectroscopy apparatus are discussed.
    corecore