2,047 research outputs found
Irradiation-energy Dependence on the Spectral Changes of Hydrous C-Type Asteroids Based on 4kev and 20kev He Exposure Experiments of Murchison Cm Chondrite
C-type asteroid 162173 Ryugu was observed by remote sensing apparatus onboard Hayabusa2 spacecraft and found to be very dark object whose reflectance is (1.60 0.15) % at 0.55m and showed a small 2.7m absorption band indicative of phyllosilicates. The optical navigation camera detected color variations of Ryugus surface in the wavelength range from 0.4 to 0.95m: Bluer spectra are ob-served at both poles and on the equatorial ridge, both of which are topographic highs and thus may be fresh material exposed by gradual erosion. On the other hand, many locations at middle-latitude areas exhibit redder and darker colors. Similar color variations are also detected in the near-infrared wavelength range. These observations suggest that a surface-correlated process is responsible for the color variation, most prob-ably from blue to red, but the mechanism for the change is not yet identified. Space weathering is one possible mechanism responsible for the color variation, but the spectral changes of C-type asteroids from space weathering are far from being fully understood. Past experimental studies using hydrous carbonaceous chondrites such as Murchison and Tagish Lake show that He exposure (simulating solar wind irradiation) changes spectra to bluer and brighter. Recently our He exposure experiments indicate that spectral changes depend on physical properties such as porosity of exposed material. In this study, we per-formed further He exposure experiments using Murchison CM chondrite in order to understand energy dependence on the spectral changes. We found that He energy is a critical parameter, as well as physical properties of the samples, that affects spectral changes of space weathering of hydrated C-type asteroids
Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers
Electrical measurements of the noise figure of a fiberoptical parametric amplifier are presented and compared with optical measurements. The transfer of pump noise by four-wave mixing was clearly demonstrated. A numerical model was developed to simulate the transfer of pump noise and validated by these measurements. Using this model, we determine, for practical systems, a minimum required pump optical signal-to-noise ratio of 65 dB
Zero-dispersion Wavelength Mapping in Short Single-Mode Optical Fibers Using Parametric Amplification
We demonstrate a novel convenient nondestructive method based on optical
parametric amplification that allows retrieval of the zero-dispersion
wavelength map along a short optical fiber span with a high-spatial resolution.
The improved resolution relies on the high sensitivity to the local
longitudinal dispersion fluctuations of the parametric high-gain spectrum.Comment: 3 page
Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers
Bit error rate induced in a parametric amplifier has been measured with a 10 Gbit=s line rate. It is shown experimentally that the phase modulation of the pump distorts the mark level of the channel and may cause system penalty. Different phase modulation schemes have been compared
Cryogenic mechanical loss of a single-crystalline GaP coating layer for precision measurement applications
The first direct observations of gravitational waves have been made by the Advanced LIGO detectors.
However, the quest to improve the sensitivities of these detectors remains, and epitaxially grown single-crystal
coatings show considerable promise as alternatives to the ion-beam sputtered amorphous mirror
coatings typically used in these detectors and other such precision optical measurements. The mechanical
loss of a 1 ÎĽm thick single-crystalline gallium phosphide (GaP) coating, incorporating a buffer layer region
necessary for the growth of high quality epitaxial coatings, has been investigated over a broad range of
frequencies and with fine temperature resolution. It is shown that at 20 K the mechanical loss of GaP is a
factor of 40 less than an undoped tantala film heat-treated to 600 °C and is comparable to the loss of a
multilayer GaP/AlGaP coating. This is shown to translate into possible reductions in coating thermal noise
of a factor of 2 at 120 K and 5 at 20 K over the current best IBS coatings (alternating stacks of silica and
titania-doped tantala). There is also evidence of a thermally activated dissipation process between 50 and
70 K
Watching the birth of a charge density wave order: diffraction study on nanometer-and picosecond-scales
Femtosecond time-resolved X-ray diffraction is used to study a photo-induced
phase transition between two charge density wave (CDW) states in 1T-TaS,
namely the nearly commensurate (NC) and the incommensurate (I) CDW states.
Structural modulations associated with the NC-CDW order are found to disappear
within 400 fs. The photo-induced I-CDW phase then develops through a
nucleation/growth process which ends 100 ps after laser excitation. We
demonstrate that the newly formed I-CDW phase is fragmented into several
nanometric domains that are growing through a coarsening process. The
coarsening dynamics is found to follow the universal Lifshitz-Allen-Cahn growth
law, which describes the ordering kinetics in systems exhibiting a
non-conservative order parameter.Comment: 6 pages, 5 figure
Frequency domain EEG source localization of ictal epileptiform activity in patients with partial complex epilepsy of temporal lobe origin
The aim of this study was to investigate whether EEG source localization in the frequency domain, using the FFT dipole approximation (Lehmann, D. and Michel, C.M. Electroenceph. clin. Neurophysiol., 1990, 76: 271-276), would be useful for quantifying the frequency content of epileptic seizure activity. Between one and 7 extracranially recorded seizures were analyzed in each of 7 patients with mesolimbic epilepsy, who were seizure-free after temporal lobe resection. The full scalp frequency spectrum for the first 4 s after seizure onset, as well as for subsequent periods, was determined. Power peaks in the spectra were identified, and an instant dipole fit was performed for the frequencies corresponding to these peaks. Ictal frequencies, ranging between 3.5 and 8.5 Hz, showed a variable degree of stability over time in the different patients. For a particular frequency, dipole results were similar during the different phases of seizure development. In patients with more than one prominent frequency, dipole results for the different frequencies were similar. Dipole results were also similar between patients. We conclude that dipole localization of dominant frequencies, as obtained from full scalp FFT analysis, gives quite reproducible results for seizures originating in the mesial temporal area. The method may become a useful tool for the pre-surgical identification of patients with mesolimbic epilepsy
Spectroscopy of 32Ne and the Island of Inversion
We report on the first spectroscopic study of the N=22 nucleus 32Ne at the
newly completed RIKEN Radioactive Ion Beam Factory. A single gamma-ray line
with an energy of 722(9) keV was observed in both inelastic scattering of a 226
MeV/u 32Ne beam on a Carbon target and proton removal from 33Na at 245 MeV/u.
This transition is assigned to the de-excitation of the first J^pi = 2+ state
in 32Ne to the 0+ ground state. Interpreted through comparison with
state-of-the-art shell model calculations, the low excitation energy
demonstrates that the Island of Inversion extends to at least N=22 for the Ne
isotopes.Comment: Accepted for publication in Phys. Rev. Lett. 11 pages, 3 figure
Non-stationary distributed source approximation: an alternative to improve localization procedures
Localization of the generators of the scalp measured electrical activity is particularly difficult when a large number of brain regions are simultaneously active. In this study, we describe an approach to automatically isolate scalp potential maps, which are simple enough to expect reasonable results after applying a distributed source localization procedure. The isolation technique is based on the time-frequency decomposition of the scalp-measured data by means of a time-frequency representation. The basic rationale behind the approach is that neural generators synchronize during short time periods over given frequency bands for the codification of information and its transmission. Consequently potential patterns specific for certain time-frequency pairs should be simpler than those appearing at single times but for all frequencies. The method generalizes the FFT approximation to the case of distributed source models with non-stationary time behavior. In summary, the non-stationary distributed source approximation aims to facilitate the localization of distributed source patterns acting at specific time and frequencies for non-stationary data such as epileptic seizures and single trial event related potentials. The merits of this approach are illustrated here in the analysis of synthetic data as well as in the localization of the epileptogenic area at seizure onset in patients. It is shown that time and frequency at seizure onset can be precisely detected in the time-frequency domain and those localization results are stable over seizures. The results suggest that the method could also be applied to localize generators in single trial evoked responses or spontaneous activity
DC-electric-field-induced and low-frequency electromodulation second-harmonic generation spectroscopy of Si(001)-SiO interfaces
The mechanism of DC-Electric-Field-Induced Second-Harmonic (EFISH) generation
at weakly nonlinear buried Si(001)-SiO interfaces is studied experimentally
in planar Si(001)-SiO-Cr MOS structures by optical second-harmonic
generation (SHG) spectroscopy with a tunable Ti:sapphire femtosecond laser. The
spectral dependence of the EFISH contribution near the direct two-photon
transition of silicon is extracted. A systematic phenomenological model of the
EFISH phenomenon, including a detailed description of the space charge region
(SCR) at the semiconductor-dielectric interface in accumulation, depletion, and
inversion regimes, has been developed. The influence of surface quantization
effects, interface states, charge traps in the oxide layer, doping
concentration and oxide thickness on nonlocal screening of the DC-electric
field and on breaking of inversion symmetry in the SCR is considered. The model
describes EFISH generation in the SCR using a Green function formalism which
takes into account all retardation and absorption effects of the fundamental
and second harmonic (SH) waves, optical interference between field-dependent
and field-independent contributions to the SH field and multiple reflection
interference in the SiO layer. Good agreement between the phenomenological
model and our recent and new EFISH spectroscopic results is demonstrated.
Finally, low-frequency electromodulated EFISH is demonstrated as a useful
differential spectroscopic technique for studies of the Si-SiO interface in
silicon-based MOS structures.Comment: 31 pages, 14 figures, 1 table, figures are also available at
http://kali.ilc.msu.su/articles/50/efish.ht
- …