335 research outputs found

    Food systems in depressed and contested agro-territories: Participatory Rural Appraisal in Odemira, Portugal

    Get PDF
    Farming regions in Europe, particularly in the South, are increasingly feeling the eects of climate change due to factors such as drought, extreme weather events, and desertification, with severe consequences for food security and food sovereignty. Additionally, decades of rural mismanagement have left countless of these farming territories severely depressed as well as at the mercy of competition for their natural resources. This paper presents and discusses the results of a Participatory Rural Appraisal conducted in the region of Odemira, Southwest Portugal. Rooted in the frameworks of agroecology and food democracy, this mixed methodology aims to support people in multiply stressed agro-territories to diagnose the state of their food systems and agroecosystems from a democratic and ecological point of view and engage local actors in imagining fairer and healthier food futures for their regions. Local food actors were invited to identify and qualify the main problems in the region’s food systems, complemented by an agroecological assessment of farm production systems. The results of the study confirm the status of Odemira as a depressed and contested agro-territory, whose social, economic, and ecological vulnerability is being compounded by the clash between the model of traditional smallholder farming and that of largescale intensive agriculture. The study also shows the potential of sustainable farming practices as well as collaboration between the dierent food actors to support an agroecological transition in the region. However, to jointly realise food democracy and food system sustainability, the tensions resulting from the current political support for hyper-industrialisation and the lack of democratic, institutional, and legal mechanisms available to local actors will need to be addressed head-oninfo:eu-repo/semantics/publishedVersio

    Optical characterization of porcine tissues from various organs in the 650-1100 nm range using time-domain diffuse spectroscopy

    Get PDF
    We present a systematic characterization of the optical properties (µa and µs') of nine representative ex vivo porcine tissues over a broadband spectrum (650-1100 nm). We applied time-resolved diffuse optical spectroscopy measurements for recovering the optical properties of porcine tissues depicting a realistic representation of the tissue heterogeneity and morphology likely to be found in different ex vivo tissues. The results demonstrate a large spectral and inter-tissue variation of optical properties. The data can be exploited for planning or simulating ex vivo experiments with various biophotonics techniques, or even to construct artificial structures mimicking specific pathologies exploiting the wide assortment in optical properties.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.Horizon 2020 Framework Programme10.13039/100010661 (654148;, 675332); Engineering and Physical Sciences Research Council10.13039/501100000266 (EP/R020965/1).published version, accepted versio

    Interstitial null-distance time-domain diffuse optical spectroscopy using a superconducting nanowire detector

    Get PDF
    Significance: Interstitial fiber-based spectroscopy is gaining interest for real-time in vivo optical biopsies, endoscopic interventions, and local monitoring of therapy. Different from other photonics approaches, time-domain diffuse optical spectroscopy (TD-DOS) can probe the tissue at a few cm distance from the fiber tip and disentangle absorption from the scattering properties. Nevertheless, the signal detected at a short distance from the source is strongly dominated by the photons arriving early at the detector, thus hampering the possibility of resolving late photons, which are rich in information about depth and absorption. Aim: To fully benefit from the null-distance approach, a detector with an extremely high dynamic range is required to effectively collect the late photons; the goal of our paper is to test its feasibility to perform TD-DOS measurements at null source-detector separations (NSDS). Approach: In particular, we demonstrate the use of a superconducting nanowire single photon detector (SNSPD) to perform TD-DOS at almost NSDS formula presented by exploiting the high dynamic range and temporal resolution of the SNSPD to extract late arriving, deep-traveling photons from the burst of early photons. Results: This approach was demonstrated both on Monte Carlo simulations and on phantom measurements, achieving an accuracy in the retrieval of the water spectrum of better than 15%, spanning almost two decades of absorption change in the 700- to 1100-nm range. Additionally, we show that, for interstitial measurements at null source-detector distance, the scattering coefficient has a negligible effect on late photons, easing the retrieval of the absorption coefficient. Conclusions: Utilizing the SNSPD, broadband TD-DOS measurements were performed to successfully retrieve the absorption spectra of the liquid phantoms. Although the SNSPD has certain drawbacks for use in a clinical system, it is an emerging field with research progressing rapidly, and this makes the SNSPD a viable option and a good solution for future research in needle guided time-domain interstitial fiber spectroscopy

    Non-invasive investigation of adipose tissue by time domain diffuse optical spectroscopy

    Get PDF
    The human abdominal region is very heterogeneous and stratified with subcutaneous adipose tissue (SAT) being one of the primary layers. Monitoring this tissue is crucial for diagnostic purposes and to estimate the effects of interventions like caloric restriction or bariatric surgery. However, the layered nature of the abdomen poses a major problem in monitoring the SAT in a non-invasive way by diffuse optics. In this work, we examine the possibility of using multi-distance broadband time domain diffuse optical spectroscopy to assess the human abdomen non-invasively. Broadband absorption and reduced scattering spectra from 600 to 1100 nm were acquired at 1, 2 and 3 cm source-detector distances on ten healthy adult male volunteers, and then analyzed using a homogeneous model as an initial step to understand the origin of the detected signal and how tissue should be modeled to derive quantitative information. The results exhibit a clear influence of the layered nature on the estimated optical properties. Clearly, the underlying muscle makes a relevant contribution in the spectra measured at the largest source-detector distance for thinner subjects related to blood and water absorption. More unexpectedly, also the thin superficial skin layer yields a direct contamination, leading to higher water content and steeper reduced scattering spectra at the shortest distance, as confirmed also by simulations. In conclusion, provided that data analysis properly accounts for the complex tissue structure, diffuse optics may offer great potential for the continuous non-invasive monitoring of abdominal fat

    Enhanced diffuse optical tomographic reconstruction using concurrent ultrasound information

    Get PDF
    Multimodal imaging is an active branch of research as it has the potential to improve common medical imaging techniques. Diffuse optical tomography (DOT) is an example of a low resolution, functional imaging modality that typically has very low resolution due to the ill-posedness of its underlying inverse problem. Combining the functional information of DOT with a high resolution structural imaging modality has been studied widely. In particular, the combination of DOT with ultrasound (US) could serve as a useful tool for clinicians for the formulation of accurate diagnosis of breast lesions. In this paper, we propose a novel method for US-guided DOT reconstruction using a portable time-domain measurement system. B-mode US imaging is used to retrieve morphological information on the probed tissues by means of a semi-automatical segmentation procedure based on active contour fitting. A two-dimensional to three-dimensional extrapolation procedure, based on the concept of distance transform, is then applied to generate a three-dimensional edge-weighting prior for the regularization of DOT. The reconstruction procedure has been tested on experimental data obtained on specifically designed dual-modality silicon phantoms. Results show a substantial quantification improvement upon the application of the implemented technique. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2’

    Time-domain NIRS system based on supercontinuum light source and multi-wavelength detection: Validation for tissue oxygenation studies

    Get PDF
    We present and validate a multi-wavelength time-domain near-infrared spectroscopy (TD-NIRS) system that avoids switching wavelengths and instead exploits the full capability of a supercontinuum light source by emitting and acquiring signals for the whole chosen range of wavelengths. The system was designed for muscle and brain oxygenation monitoring in a clinical environment. A pulsed supercontinuum laser emits broadband light and each of two detection modules acquires the distributions of times of flight of photons (DTOFs) for 16 spectral channels (used width 12.5 nm / channel), providing a total of 32 DTOFs at up to 3 Hz. Two emitting fibers and two detection fiber bundles allow simultaneous measurements at two positions on the tissue or at two source-detector separations. Three established protocols (BIP, MEDPHOT, and nEUROPt) were used to quantitatively assess the system's performance, including linearity, coupling, accuracy, and depth sensitivity. Measurements were performed on 32 homogeneous phantoms and two inhomogeneous phantoms (solid and liquid). Furthermore, measurements on two blood-lipid phantoms with a varied amount of blood and Intralipid provide the strongest validation for accurate tissue oximetry. The retrieved hemoglobin concentrations and oxygen saturation match well with the reference values that were obtained using a commercially available NIRS system (OxiplexTS) and a blood gas analyzer (ABL90 FLEX), except a discrepancy occurs for the lowest amount of Intralipid. In-vivo measurements on the forearm of three healthy volunteers during arterial (250 mmHg) and venous (60 mmHg) cuff occlusions provide an example of tissue monitoring during the expected hemodynamic changes that follow previously well-described physiologies. All results, including quantitative parameters, can be compared to other systems that report similar tests. Overall, the presented TD-NIRS system has an exemplary performance evaluated with state-of-the-art performance assessment methods

    Long-Term Consequences of Water Pumping on the Ecosystem Functioning of Lake Sekšu, Latvia

    Get PDF
    Cultural eutrophication, the process by which pollution due to human activity speeds up natural eutrophication, is a widespread and consequential issue. Here, we present the 85-year history of a small, initially Lobelia–Isoëtes dominated lake. The lake’s ecological deterioration was intensified by water pumping station activities when it received replenishment water for more than 10 years from a eutrophic lake through a pipe. In this study, we performed a paleolimnological assessment to determine how the lake’s ecosystem functioning changed over time. A multi-proxy (pollen, Cladocera, diatoms, and Chironomidae) approach was applied alongside a quantitative reconstruction of total phosphorus using diatom and hypolimnetic dissolved oxygen with chironomid-based transfer functions. The results of the biotic proxy were supplemented with a geochemical analysis. The results demonstrated significant changes in the lake community’s structure, its sediment composition, and its redox conditions due to increased eutrophication, water level fluctuations, and erosion. The additional nutrient load, particularly phosphorus, increased the abundance of planktonic eutrophic–hypereutrophic diatoms, the lake water’s transparency decreased, and hypolimnetic anoxia occurred. Cladocera, Chironomidae, and diatoms species indicated a community shift towards eutrophy, while the low trophy species were suppressed or disappeared

    Long-Term Consequences of Water Pumping on the Ecosystem Functioning of Lake Sekšu, Latvia

    Get PDF
    Cultural eutrophication, the process by which pollution due to human activity speeds up natural eutrophication, is a widespread and consequential issue. Here, we present the 85-year history of a small, initially Lobelia–Isoëtes dominated lake. The lake’s ecological deterioration was intensified by water pumping station activities when it received replenishment water for more than 10 years from a eutrophic lake through a pipe. In this study, we performed a paleolimnological assessment to determine how the lake’s ecosystem functioning changed over time. A multi-proxy (pollen, Cladocera, diatoms, and Chironomidae) approach was applied alongside a quantitative reconstruction of total phosphorus using diatom and hypolimnetic dissolved oxygen with chironomid-based transfer functions. The results of the biotic proxy were supplemented with a geochemical analysis. The results demonstrated significant changes in the lake community’s structure, its sediment composition, and its redox conditions due to increased eutrophication, water level fluctuations, and erosion. The additional nutrient load, particularly phosphorus, increased the abundance of planktonic eutrophic–hypereutrophic diatoms, the lake water’s transparency decreased, and hypolimnetic anoxia occurred. Cladocera, Chironomidae, and diatoms species indicated a community shift towards eutrophy, while the low trophy species were suppressed or disappeared

    Long-Term Consequences of Water Pumping on the Ecosystem Functioning of Lake Sekšu, Latvia

    Get PDF
    Cultural eutrophication, the process by which pollution due to human activity speeds up natural eutrophication, is a widespread and consequential issue. Here, we present the 85-year history of a small, initially Lobelia-Isoetes dominated lake. The lake's ecological deterioration was intensified by water pumping station activities when it received replenishment water for more than 10 years from a eutrophic lake through a pipe. In this study, we performed a paleolimnological assessment to determine how the lake's ecosystem functioning changed over time. A multi-proxy (pollen, Cladocera, diatoms, and Chironomidae) approach was applied alongside a quantitative reconstruction of total phosphorus using diatom and hypolimnetic dissolved oxygen with chironomid-based transfer functions. The results of the biotic proxy were supplemented with a geochemical analysis. The results demonstrated significant changes in the lake community's structure, its sediment composition, and its redox conditions due to increased eutrophication, water level fluctuations, and erosion. The additional nutrient load, particularly phosphorus, increased the abundance of planktonic eutrophic-hypereutrophic diatoms, the lake water's transparency decreased, and hypolimnetic anoxia occurred. Cladocera, Chironomidae, and diatoms species indicated a community shift towards eutrophy, while the low trophy species were suppressed or disappeared.Peer reviewe
    • …
    corecore