815 research outputs found

    Neutron reflection from the liquid helium surface.

    Get PDF
    The reflection of neutrons from a helium surface has been observed for the first time. The 4He surface is smoother in the superfluid state at 1.54 K than in the case of the normal liquid at 2.3 K. In the superfluid state we also observe a surface layer ~200 Å thick which has a subtly different neutron scattering cross-section, which may be explained by an enhanced Bose-Einstein condensate fraction close to the helium surface. The application of neutron reflectometry described in this paper creates new and exciting opportunities for the surface and interfacial study of quantum fluids

    The impact of drought on wheat leaf cuticle properties

    Get PDF
    BACKGROUND: The plant cuticle is the outermost layer covering aerial tissues and is composed of cutin and waxes. The cuticle plays an important role in protection from environmental stresses and glaucousness, the bluish-white colouration of plant surfaces associated with cuticular waxes, has been suggested as a contributing factor in crop drought tolerance. However, the cuticle structure and composition is complex and it is not clear which aspects are important in determining a role in drought tolerance. Therefore, we analysed residual transpiration rates, cuticle structure and epicuticular wax composition under well-watered conditions and drought in five Australian bread wheat genotypes, Kukri, Excalibur, Drysdale, RAC875 and Gladius, with contrasting glaucousness and drought tolerance. RESULTS: Significant differences were detected in residual transpiration rates between non-glaucous and drought-sensitive Kukri and four glaucous and drought-tolerant lines. No simple correlation was found between residual transpiration rates and the level of glaucousness among glaucous lines. Modest differences in the thickness of cuticle existed between the examined genotypes, while drought significantly increased thickness in Drysdale and RAC875. Wax composition analyses showed various amounts of C31 ß-diketone among genotypes and increases in the content of alkanes under drought in all examined wheat lines. CONCLUSIONS: The results provide new insights into the relationship between drought stress and the properties and structure of the wheat leaf cuticle. In particular, the data highlight the importance of the cuticle’s biochemical makeup, rather than a simple correlation with glaucousness or stomatal density, for water loss under limited water conditions.Huihui Bi, Nataliya Kovalchuk, Peter Langridge, Penny J. Tricker, Sergiy Lopato, and Nikolai Borisju

    Probing the Spiral Magnetic Phase in 6 nm Textured Erbium using Polarised Neutron Reflectometry

    Get PDF
    We characterise the magnetic state of highly-textured, sputter deposited erbium for a film of thickness 6 nm. Using polarised neutron reflectometry it is found the film has a high degree of magnetic disorder, and we present some evidence that the films’ local magnetic state is consistent with bulk-like spiral magnetism. This, combined with complementary characterisation techniques, show that thin film erbium is a strong candidate material for incorporation into device structures

    Molecular interaction of the gamma-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit

    Get PDF
    The ᵧ-clade of class I homeodomain-leucine zipper (HD-Zip I) transcription factors (TFs) constitute members which play a role in adapting plant growth to conditions of water deficit. Given the importance of wheat (Triticum aestivum L.) as a global food crop and the impact of water deficit upon grain yield, we focused on functional aspects of wheat drought responsive HD-Zip I TFs. While the wheat ᵧ-clade HD-Zip I TFs share significant sequence similarities with homologous genes from other plants, the clade-specific features in transcriptional response to abiotic stress were detected. We demonstrate that wheat TaHDZipI- 3, TaHDZipI-4, and TaHDZipI-5 genes respond differentially to a variety of abiotic stresses, and that proteins encoded by these genes exhibit pronounced differences in oligomerisation, strength of DNA binding, and trans-activation of an artificial promoter. Three-dimensional molecular modelling of the protein-DNA interface was conducted to address the ambiguity at the central nucleotide in the pseudo-palindromic cis-element CAATNATTG that is recognised by all three HD-Zip I proteins. The coexpression of these genes in the same plant tissues together with the ability of HD-Zip I TFs of the ᵧ -clade to heterodimerise suggests a role in the regulatory mechanisms of HD-Zip I dependent transcription. Our findings highlight the complexity of TF networks involved in plant responses to water deficit. A better understanding of the molecular complexity at the protein level during crop responses to drought will enable adoption of efficient strategies for production of cereal plants with enhanced drought tolerance.John C. Harris, Pradeep Sornaraj, Mathew Taylor, Natalia Bazanova, Ute Baumann, Ben Lovell, Peter Langridge, Sergiy Lopato, Maria Hrmov

    Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat

    Get PDF
    Expression of the wheat dehydrin gene Cor410b is induced several fold above its non-stressed levels upon exposure to stresses such as cold, drought and wounding. Deletion analysis of the TdCor410b promoter revealed a single functional C-repeat (CRT) element. Seven transcription factors (TFs) were shown to bind to this CRT element using yeast one-hybrid screens of wheat and barley cDNA libraries, of which only one belonged to the DREB class of TFs. The remaining six encoded ethylene response factors (ERFs) belong to three separate subfamilies. Analysis of binding selectivity of these TFs indicated that all seven could bind to the CRT element (GCCGAC), and that three of the six ERFs could bind both to the CRT element and the ethylene-responsive GCC-box (GCCGCC). The TaERF4 subfamily members specifically bound the CRT element, and did not bind either the GCC-box or DRE element (ACCGAC). Molecular modeling and site-directed mutagenesis identified a single residue Pro42 in the Apetala2 (AP2) domain of TaERF4-like proteins that is conserved in monocotyledonous plants and is responsible for the recognition selectivity of this subfamily. We suggest that both DREB and ERF proteins regulate expression of the Cor410b gene through a single, critical CRT element. Members of the TaERF4 subfamily are specific, positive regulators of Cor410b gene expression.Omid Eini, Nannan Yang, Tatiana Pyvovarenko, Katherine Pillman, Natalia Bazanova, Natalia Tikhomirov, Serik Eliby, Neil Shirley, Shoba Sivasankar, Scott Tingey, Peter Langridge, Maria Hrmova, Sergiy Lopat

    Observation of anomalous Meissner screening in Cu/Nb and Cu/Nb/Co thin films

    Get PDF
    We have observed the spatial distribution of magnetic flux in Nb, Cu/Nb and Cu/Nb/Co thin films using muon-spin rotation. In an isolated 50 nm thick Nb film we find a weak flux expulsion (Meissner effect) which becomes significantly enhanced when adding an adjacent 40 nm layer of Cu. The added Cu layer exhibits a Meissner effect (due to induced superconducting pairs) and is at least as effective as the Nb to expel flux. These results are confirmed by theoretical calculations using the quasiclassical Green’s function formalism. An unexpected further significant enhancement of the flux expulsion is observed when adding a thin (2.4 nm) ferromagnetic Co layer to the bottom side of the Nb. This observed cooperation between superconductivity and ferromagnetism, by an unknown mechanism, forms a key ingredient for developing superconducting spintronics

    Control of superconductivity with a single ferromagnetic layer in niobium/erbium bilayers

    Get PDF
    Superconducting spintronics in hybrid superconductor{ferromagnet (S{F) heterostructures provides an exciting potential new class of device. The prototypical super-spintronic device is the superconducting spin-valve, where the critical temperature, Tc, of the S-layer can be controlledby the relative orientation of two (or more) F-layers. Here, we show that such control is also possible in a simple S/F bilayer. Using eld history to set the remanent magnetic state of a thin Er layer, we demonstrate for a Nb/Er bilayer a high level of control of both Tc and the shape of the resistive transition, R(T), to zero resistance. We are able to model the origin of the remanent magnetization, treating it as an increase in the e ective exchange eld of the ferromagnet and link this, using conventional S{F theory, to the suppression of Tc. We observe stepped features in the R(T) which we argue is due to a fundamental interaction of superconductivity with inhomogeneous ferromagnetism, a phenomena currently lacking theoretical description

    Phase Behavior of Columnar DNA Assemblies

    Get PDF
    The pair interaction between two stiff parallel linear DNA molecules depends not only on the distance between their axes but on their azimuthal orientation. The positional and orientational order in columnar B-DNA assemblies in solution is investigated, based on the DNA-DNA electrostatic pair potential that takes into account DNA helical symmetry and the amount and distribution of adsorbed counterions. A phase diagram obtained by lattice sum calculations predicts a variety of positionally and azimuthally ordered phases and bundling transitions strongly depending on the counterion adsorption patterns.Comment: 4 pages, 3 figures, submitted to PR

    Transcriptome pathways unique to dehydration tolerant relatives of modern wheat

    Get PDF
    Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats
    corecore