45 research outputs found

    Functional Status of Peripheral Blood T-Cells in Ischemic Stroke Patients

    Get PDF
    Stroke is a major cause of disability and leading cause of death in the northern hemisphere. Only recently it became evident that cerebral ischemia not only leads to brain tissue damage and subsequent local inflammation but also to a dramatic loss of peripheral blood T-cells with subsequent infections. However, only scarce information is available on the activation status of surviving T cells. This study therefore addressed the functional consequences of immunological changes induced by stroke in humans. For this purpose peripheral blood T-cells were isolated from 93 stroke patients and the expression of activation makers was determined. In addition ex vivo stimulation assays were applied to asses the functionality of T cells derived from blood of stroke patients. Compared to healthy controls, stroke patients demonstrated an enhanced surface expression of HLA-DR (p<0.0001) and CD25 (p = 0.02) on T cells, revealing that stroke leads to T cell activation, while CTLA-4 remained undetectable. In vitro studies revealed that catecholamines inhibit CTLA-4 upregulation in activated T cells. Ex vivo, T cells of stroke patients proliferated unimpaired and released increased amounts of the proinflammatory cytokine TNF-α (p<0.01) and IL-6 (p<0.05). Also, in sera of stroke patients HMGB1 concentrations were increased (p = 0.0002). The data demonstrate that surviving T cells in stroke patients remain fully functional and are primed towards a TH1 response, in addition we provide evidence that catecholamine mediated inhibition of CTLA-4 expression and serum HMGB1 release are possible mediators in stroke induced activation of T cells

    Juvenile Myoclonic Epilepsy Shows Potential Structural White Matter Abnormalities: A TBSS Study

    Get PDF
    Background: Several studies on patients with juvenile myoclonic epilepsy (JME) showed widespread white matter (WM) abnormalities in the brain. The aim of this study was to investigate potential structural abnormalities in JME patients (1) compared to healthy controls, (2) among JME subgroups with or without photoparoxysmal responses (PPR), and (3) in correlation with clinical variables.Methods: A selection of 31 patients with JME (12 PPR positive) and 27 age and gender matched healthy controls (HC) were studied at a tertiary epilepsy center. Fractional anisotropy (FA) was calculated and intergroup differences analyzed using Tract Based Spatial Statistics (TBSS).Results: Compared to HC the JME group showed reduced FA widespread and bilateral in the longitudinal fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, anterior and posterior thalamic radiation, corona radiata, corpus callosum, cingulate gyrus and external capsule (p &lt; 0.01). Subgroup analysis revealed no significant differences of WM alterations between PPR positive and negative patients and with clinical and epilepsy-related factors.Conclusions: Widespread microstructural abnormalities among patients with JME have been identified.Prior findings of frontal and thalamofrontal microstructural abnormalities have been confirmed. Additionally, microstructural abnormalities were found in widespread extra-frontal regions that may help to validate pathophysiological concepts of JME

    7.1 T MRI to Assess the Anterior Segment of the Eye

    Get PDF
    PURPOSE. Visualization of the anterior segment and biometric evaluation of the entire crystalline lens pose significant challenges for imaging techniques because of tissue-induced distortion artifacts. The present study was conducted to demonstrate the advantages of high-resolution magnetic resonance imaging (micro-MRI) for visualizing the anterior segment. METHODS. High-resolution MR ocular images were acquired on an ultra-high-field MR unit using a two-channel coil with four coil elements and T(2)-weighted turbo spin echo sequences ex vivo in pig, rabbit, monkey, and human donor eyes and in vivo in rabbits. Tissue heating, reproducibility, and signal-to-noise ratio were investigated in vivo. Monkey eye lens thickness (LT) was also measured using A-scan ultrasonography (US). RESULTS. Anterior segment details of phakic eyes were obtained ex vivo (pig, rabbit, monkey, and human donor eyes) with pixel matrix size 512 x 512 (in-plane resolution 80 x 80 mu m) and in vivo (rabbit eyes) with pixel matrix size 320 x 320 (in-plane resolution 125 x 125 mu m). Complete quantification of lens dimensions as they correlate with the sulcus-sulcus and angle-angle plane can be performed. In LT determinations in monkey eyes, no significant difference was detected between micro-MRI and A-scan US (P > 0.05, Mann-Whitney U test). Biometric analysis of one pseudophakic monkey eye confirmed the absence of relevant distortion artifacts. CONCLUSIONS. Micro-MRI allows ex vivo and in vivo visualization and quantification of the spatial arrangement of the anterior eye segment. Imaging of the retroiridian region, including the entire crystalline lens, overcomes a number of major limitations in the quantitative evaluation of the anterior segment. (Invest Ophthalmol Vis Sci. 2010; 51: 6575-6581) DOI:10.1167/iovs.09-486

    Network-based atrophy modelling in the common epilepsies: a worldwide ENIGMA study

    Get PDF
    SUMMARY Epilepsy is increasingly conceptualized as a network disorder. In this cross-sectional mega-analysis, we integrated neuroimaging and connectome analysis to identify network associations with atrophy patterns in 1,021 adults with epilepsy compared to 1,564 healthy controls from 19 international sites. In temporal lobe epilepsy, areas of atrophy co-localized with highly interconnected cortical hub regions, whereas idiopathic generalized epilepsy showed preferential subcortical hub involvement. These morphological abnormalities were anchored to the connectivity profiles of distinct disease epicenters, pointing to temporo-limbic cortices in temporal lobe epilepsy and fronto-central cortices in idiopathic generalized epilepsy. Indices of progressive atrophy further revealed a strong influence of connectome architecture on disease progression in temporal lobe, but not idiopathic generalized, epilepsy. Our findings were reproduced across individual sites and single patients, and were robust across different analytical methods. Through worldwide collaboration in ENIGMA-Epilepsy, we provided novel insights into the macroscale features that shape the pathophysiology of common epilepsies

    Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

    Get PDF
    Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-Analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = \uc3\ua2 '0.24 to \uc3\ua2 '0.73; P < 1.49 \uc3\u97 10 \uc3\ua2 '4), and lower thickness in the precentral gyri bilaterally (d = \uc3\ua2 '0.34 to \uc3\ua2 '0.52; P < 4.31 \uc3\u97 10 \uc3\ua2 '6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = \uc3\ua2 '1.73 to \uc3\ua2 '1.91, P < 1.4 \uc3\u97 10 \uc3\ua2 '19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = \uc3\ua2 '0.36 to \uc3\ua2 '0.52; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = \uc3\ua2 '0.29 to \uc3\ua2 '0.54; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = \uc3\ua2 '0.27 to \uc3\ua2 '0.51; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < \uc3\ua2 '0.0018; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed

    White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study

    Get PDF
    The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across ‘all epilepsies’ lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research

    A systems-level analysis highlights microglial activation as a modifying factor in common forms of human epilepsy

    Get PDF
    The common human epilepsies are associated with distinct patterns of reduced cortical thickness, detectable on neuroimaging, with important clinical consequences. To explore underlying mechanisms, we layered MRI-based cortical structural maps from a large-scale epilepsy neuroimaging study onto highly spatially-resolved human brain gene expression data, identifying >2,500 genes overexpressed in regions of reduced cortical thickness, compared to relatively-protected regions. The resulting set of differentially-expressed genes shows enrichment for microglial markers, and in particular, activated microglial states. Parallel analyses of cell-specific eQTLs show enrichment in human genetic signatures of epilepsy severity, but not epilepsy causation. Post mortem brain tissue from humans with epilepsy shows excess activated microglia. In an experimental model, depletion of activated microglia prevents cortical thinning, but not the development of chronic seizures. These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control

    Topographic divergence of atypical cortical asymmetry and atrophy patterns in temporal lobe epilepsy

    Get PDF
    Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.11Nsciescopu

    Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

    Get PDF
    corecore