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Abstract
The epilepsies are commonly accompanied by widespread abnormalities in cerebral 

white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating 

data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, 

including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. 

Our goal was to rank the most robust white matter microstructural differences across and within 

syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data 

were analyzed from 1,069 healthy controls and 1,249 patients: temporal lobe epilepsy with 

hippocampal sclerosis (N=599), temporal lobe epilepsy with normal MRI (N=275), genetic 

generalized epilepsy (N=182) and nonlesional extratemporal epilepsy (N=193). A harmonized 

protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional 

anisotropy and mean diffusivity for each participant, and fiber tracts were segmented using a 

diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in 

diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, 

adjusting for age and sex, examined differences between each epilepsy syndrome and controls 

for each white matter tract (Bonferroni corrected at p<0.001). Across “all epilepsies” lower 

fractional anisotropy was observed in most fiber tracts with small to medium effect sizes, 

especially in the corpus callosum, cingulum and external capsule. There were also less robust 

increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity 

differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral 

parahippocampal cingulum and external capsule, with smaller effects across most other tracts. 

Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater 

ipsilateral than contralateral abnormalities, but less marked than those in patients with 

hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced 

reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, 
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and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and 

longer disease duration were associated with a greater extent of diffusion abnormalities in 

patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across 

major association, commissural, and projection fibers in a large multicentre study of epilepsy. 

Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, 

cingulum and external capsule, with differing severity across epilepsy syndromes. These data 

further define the spectrum of white matter abnormalities in common epilepsy syndromes, 

yielding more detailed insights into pathological substrates that may explain cognitive and 

psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or 

genetic research.
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Introduction

Epilepsy affects over 50 million people worldwide (Bell et al., 2014). Focal epilepsies 

account for around 60% of all adult epilepsy cases, and temporal lobe epilepsy (TLE) is the 

most common (Téllez-Zenteno and Hernández-Ronquillo, 2012). TLE is associated with 

hippocampal sclerosis (HS) in 60-70% of cases (Coan and Cendes, 2013). Among adult 

epilepsy patients, up to 20% have genetic generalized epilepsy (GGE), with bilateral 

synchronous seizure onset and a presumed genetic background (Scheffer et al., 2017). These 

epilepsy syndromes are frequently studied in isolation and may have distinct 

pathophysiological substrates and mechanisms. Their unique and shared biological pathways 

are beginning to be unraveled using population genetics (ILAE, 2018) and transcriptomics 

(Altmann et al., 2017), paving the pathway for potential novel treatments. 

Once considered primarily “gray matter” diseases, brain imaging studies with 

diffusion magnetic resonance imaging (dMRI) have helped reveal that both focal and 

generalized epilepsies represent network disorders with widespread white matter alterations 

even in the absence of visible MRI lesions (Engel et al., 2013). Patients with TLE, 

particularly those with HS, may exhibit white matter abnormalities both proximal to and 

distant from the seizure focus, often most pronounced in the ipsilateral hemisphere (Focke et 

al., 2008; Ahmadi et al., 2009; Labate et al., 2015; Caligiuri et al., 2016). Studies in patients 

with GGE have demonstrated microstructural compromise in frontal and parietal regions 

bilaterally, and in thalamocortical pathways (Keller et al., 2011; Lee et al., 2014; Szaflarski 

et al., 2016). White matter disruption in epilepsy is also linked to cognitive functioning 

(McDonald et al., 2008; Yogarajah et al., 2008, 2010) and postsurgical seizure outcomes 

(Bonilha et al., 2015; Keller et al., 2015, 2017; Gleichgerrcht et al., 2018), indicating the 

importance of white matter networks in the pathophysiology and co-morbidities of epilepsy.  
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Meta-analyses and single-site studies of dMRI suggest widespread microstructural 

abnormalities in patients with focal epilepsy affecting association, commissural, and 

projection fibers, whereas microstructural differences in GGE are reportedly less pronounced 

(Otte et al., 2012; Slinger et al., 2016). Unfortunately, the exact tracts, spatial pattern, and 

extent of damage reported varies across studies, making it hard to draw conclusions about 

syndrome-specific and generalized white matter abnormalities in epilepsy. Inconsistencies 

may be due, in part, to small sample sizes at individual centers, which may lack power to 

detect reliable differences across a large number of white matter tracts and multiple diffusion 

measures. Methods for image acquisition, processing, and tract selection also differ greatly 

across studies, adding other sources of variability. Few studies consider white matter 

abnormalities as a function of sex, age, and key clinical characteristics leading to multiple 

uncertainties in the findings. Although meta-analyses reduce some of these limitations, 

harmonizing the image processing and data analysis in a consortia effort alleviates some of 

the known sources of variation and allows for the statistical modeling of other population 

differences. Furthermore, pooling raw data across a large number of centers in a mega-

analysis1 may offer greater power to detect group effects and enable cross-syndrome 

comparisons that have not previously been possible. Further, due to the collation of world-

wide harmonized image analysis protocols, analysis, and reporting of results, white matter 

differences in epilepsy can now be directly compared to those of other neurological and 

psychiatric disorders, highlighting pathology that may be unique to epilepsy and/or its 

treatments.

Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) is a global 

initiative, combining individually collected samples from studies around the world into a 

1 A meta-analysis aggregates summary results (e.g. effect size estimates, standard errors, and confidence 
intervals) across studies, but a mega-analysis aggregates individual participant data across studies, and may 
allow additional data harmonization. For an empirical comparison between the two techniques using structural 
MRI data, please refer to Boedhoe et al., 2018.
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single large-scale study, with coordinated image processing, and integrating imaging, 

phenotypic, and genomic data from hundreds of research centers worldwide (Thompson et 

al., 2020). Standardized protocols for image processing, quality assurance, and statistical 

analyses were applied using the validated ENIGMA-dMRI protocols for multi-site diffusion 

tensor imaging (DTI) harmonization, http://enigma.usc.edu/ongoing/dti-working-group/ 

(Jahanshad et al., 2013; Kochunov et al., 2014, 2015).

Our primary goal was to identify and rank the most robust white matter 

microstructural alterations across and within common epilepsy syndromes in a sample of 

1,249 adult epilepsy patients and 1,069 healthy controls across nine countries from North and 

South America, Europe and Australia. First, we studed all patients in aggregate (“all 

epilepsies”) compared to age and sex matched controls, followed by targeted analyses 

focusing on patients with right and left TLE-HS, right and left non-lesional TLE (TLE-NL), 

nonlesional extratemporal epilepsy (ExE), and GGE. We characterize effect size (ES) 

differences across and within these epilepsy syndromes in fractional anisotropy (FA) and 

mean diffusivity (MD), as well as axial (AD) and radial (RD) diffusivity. We also examine 

regional white matter associations with age of seizure onset and disease duration.  

We hypothesized that, compared to controls, each patient group would show white 

matter alterations beyond the suspected epileptogenic region, with unique patterns in each 

group. Specifically, we hypothesized that patients with TLE would show the most 

pronounced alterations in ipsilateral temporo-limbic regions, most notably in TLE-HS. We 

hypothesized that patients with GGE would show bilateral fronto-thalamocortical alterations. 

We also hypothesized that common white matter alterations would emerge across the patient 

groups and that many of these regional alterations would correlate with years of disease 

duration. 
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Materials and methods
All study participants provided written informed consent for the local study, and the 

local institutional review boards and ethics committees approved each included cohort study.

Study sample

This study from the ENIGMA-Epilepsy working group consists of 21 cohorts from 

nine different countries and includes dMRI scans from 1,069 healthy controls and 1,249 adult 

epilepsy patients. Demographic and clinical characteristics of the samples are presented in 

Table 1 (by site) and Table 2 (across site). An epilepsy specialist assessed seizure and 

syndrome classifications at each center, using the International League Against Epilepsy 

(ILAE) criteria. For the TLE subgroups, we included anyone with the typical electroclinical 

constellation of this syndrome (Berg et al., 2010). All TLE-HS patients had a 

neuroradiologically-confirmed diagnosis of unilateral hippocampal atrophy and increased T2 

signal on clinical MRI, whereas all of the TLE-NL patients had a normal MRI undertaken at 

the same time as the analyzed dMRI scan. Participants with a normal MRI and frontal, 

occipital, or parietal epilepsy were labelled as ExE. Participants with tonic-clonic, absence or 

myoclonic seizures with generalized spike-wave discharges on EEG were included in the 

GGE group. Data on anti-epilepsy drug (AED) regimen, seizure frequency, and clinical 

outcomes (e.g., drug resistance, postsurgical outcome) were not available at the time of the 

analysis. We excluded participants who did not meet criteria for one of the above epilepsy 

syndromes or who had MRI-visible lesions that would disrupt brain morphometry, including 

malformations of cortical development, tumors or prior neurosurgery. Participants were 

between 18 and 70 years of age.
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Image processing and analysis

Scanner descriptions and acquisition protocols for all sites are provided in 

Supplementary Table 1. Individual scanners that used different acquisition protocols are 

listed as separate scanner instances. Each site conducted the preprocessing of diffusion-

weighted images, including eddy current correction, echo-planar imaging (EPI)-induced 

distortion correction, and tensor estimation. Next, diffusion-tensor imaging (DTI) images 

were processed using the ENIGMA-DTI protocols. These image processing and quality 

control protocols are freely available at the ENIGMA-DTI 

(http://enigma.ini.usc.edu/ongoing/dti-working-group/) and NITRC 

(https://www.nitrc.org/projects/enigma_dti/) webpages. Measures of FA, MD, AD and RD 

were obtained for 38 regions of interest using the Johns Hopkins University (JHU) atlas 

(Figure 1). 

For analyses of all patients and for each syndrome, we used the left and right tracts, 

the midline structures of the body (BCC), genu (GCC), and splenium (SCC) of the corpus 

callosum and the average diffusion metric (FA/MD/AD/RD) across the whole brain (38 

ROIs). Corrections for multiple comparisons were carried out for each epilepsy syndrome, 

based on the number of ROIs: 34 bilateral white matter regions + BCC + GCC + SCC + 

Average FA=38 ROIs: Bonferroni-corrected threshold for significance p=0.05/38=0.001.

Data harmonization

The batch-effect correction tool, ComBat, was used to harmonize between-site and 

between-protocol variations in diffusion metrics as previously demonstrated (Fortin et al., 

2017). The method globally rescales the data (all ROIs for FA, MD, RD or AD separately) 

for each scanner instance using a z-score transformation map common to all features. 

ComBat uses an empirical Bayes framework (Johnson et al., 2007) to improve the variance 
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of the parameter estimates, assuming that all ROIs share the same common distribution. 

Thus, all ROIs are used to inform the statistical properties of the scanner effects. We set each 

scanner instance as each individual scanner used in the collection of MR exams, and where 

there were different scanning protocols used on the same scanner, each protocol was set as a 

different scanning instance. Scanner type was used as the batch effect and diagnosis (patients 

versus controls) and syndrome (GGE, TLE-HS, TLE-NL, and ExE) were used as the 

biological phenotypes of interest. This technique has been recently applied in other ENIGMA 

DTI investigations of brain disorders (Villalón-Reina et al., 2019; Zavaliangos-Petropulu et 

al., 2019). 

Statistical analysis

Statistical analysis was performed in the Statistical Package for the Social Sciences 

(SPSS v26.0). Pearson correlation examined the association between age of onset and disease 

duration. Analysis of variance (ANOVA) was used to test for differences in demographic and 

clinical characteristics among the epilepsy syndromes. To test for differences between 

syndromes and controls and to test for global effects of age at scan and sex on white matter, 

multivariate analysis of covariance (MANCOVA) was performed per diffusion metric, 

adjusting for age, age2 and sex. Age2 was included in all analyses to model the non-linear 

effects of age on diffusivity measures (Lebel et al., 2012). ANCOVAs were then performed 

of each patient syndrome compared to controls controlling for age, age2 and sex and 

Bonferroni corrected at p<0.001. Cohen’s d effect sizes (ES) were calculated for each right 

and left fiber tract between controls and each patient syndrome based on the estimated 

marginal means (adjusted for age, age2, and sex) and interpreted according to the following 

criteria:  small d=0.20-0.49 ; medium d=0.50-0.79; large d>=0.80 (Sawilowsky, 2008). 

Throughout the text and figures, positive ES values correspond to patients having higher 
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values than controls, whereas negative ES values correspond to patients having lower values 

relative to controls. Partial correlations controlling for the same covariates were performed to 

evaluate the relationship between each fiber tract FA/MD and age of seizure onset and 

disease duration (corrected p<0.001). To demonstrate the most robust group differences, only 

tracts that showed medium and large effects are described in the text. Tracts with small 

effects are detailed in the Supplementary materials (see Supplementary materials for all 

results: Tables 4-7 and Figs. 1-2). In followup analysis to check that heteroscedasticity was 

not influencing results, FSL PALM (Winkler et al., 2014) was used to test if permutation 

testing of the difference in FA between patients and controls was similar to the core 

ANCOVA results (Fig. 3, Supplementary Table 4). The model controlled for age and sex and 

10000 permutations were run with exchangability blocks (Winkler et al., 2015) set for 

permutations to take place within scanner instances only. We used the Aspin-Welch v test 

statistic and the simulated significance P(sim) threshold was set at p< 0.001.   

 

Page 17 of 78

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain

https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20f400dbf2b94e;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20856c4bbbd8ff;;;;;


For Peer Review

Results

Demographics

Demographic and clinical characteristics of each sample are presented in Table 2. A 

one-way ANOVA with group as the between-subjects factor revealed differences across the 

seven groups in age [F(6, 2083) = 13.3, p<0.001)]. Two, one-way ANOVAs across the six 

patient syndromes revealed group differences in age of seizure onset [F(5, 1095) = 6.3, 

p<0.001] and disease duration [F(5,1039) = 22.4, p<0.001]. Post-hoc comparisons revealed 

that controls were younger than both TLE-HS groups and older than patients with GGE and 

ExE (all p-values<0.05). Both TLE-HS groups and the left TLE-NL group were older than 

the GGE and ExE groups (p<0.05). The right TLE-HS group was older than both TLE-NL 

groups (p<0.05). The GGE and TLE-HS groups had an earlier age of seizure onset than the 

TLE-NL groups. Duration of illness in TLE-HS groups was longer than in all other groups.

Data harmonization with ComBat

Initial frequency plots revealed high variability in the distribution of diffusivity 

measures (e.g., mean FA, mean MD) among scanner instances (Fig. 2A). After batch 

correction with ComBat, the distributions were centered around a common mean (Fig. 2B), 

but maintained their expected association with age (Fig. 2C). Following this process, extreme 

ROI outliers beyond 3 SD were removed from the subsequent analysis (i.e., per ROI for a 

given subject, not per subject). This approach resulted in the removal of only 1-5 ROIs per 

site, per diffusion parameter. The harmonization process successfully reduced the variance of 

diffusivity measures, especially in MD, AD and RD (Supplementary Table 2).
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All epilepsies group 

Multivariate tests of within-subject effects

Comparing the whole epilepsy group with healthy controls, significant differences 

were observed in FA (F(228,13452)=4.7, p<0.001, Pillai's Trace=0.44, partial η2=0.07), MD 

(F(228,11688)=2.8, p<0.001, Pillai's Trace=0.31, partial η2=0.05), RD (F(228,11790)=3.28, 

p<0.001, Pillai's Trace=0.36, partial η2=0.06), and AD (F(228,11946)=1.96, p<0.001, Pillai's 

Trace=0.22, partial η2=0.04). Sex, age, and age2 all significantly contributed to the model 

(see Supplementary Table 3). Compared to females, males generally had higher FA, slightly 

higher RD and no difference in MD or AD. 

All epilepsies vs healthy controls

The “all epilepsies” group showed lower FA than controls globally in 36 of 38 ROIs 

(p<0.001; Fig. 3, Supplementary Table 4), with medium ES observed for the Average FA 

(d=-0.71), external capsule (EC; left d=-0.64, right d=-0.63), body (d=-0.59) and genu (d=-

0.59) of the corpus callosum (BCC and GCC), cingulate gyrus of the cingulum bundle (CGC, 

left d=-0.57, right d=-0.50), sagittal stratum (SS, left d=0.55, right d=0.52), anterior corona 

radiata (ACR, left d=-0.50, right d=-0.52), and left parahippocampal cingulum (CGH, d=-

0.52). Followup permutation testing confirmed that the same ROIs were significantly lower 

in FA in patients compared to controls when accounting for possible heteroscedasticity 

between scanner instances (Supplementary Table 16). 

The “all epilepsies” group showed higher MD than the controls in 27 ROIs (Fig. 4, 

Supplementary Table 5). Similar to the MD, patients showed higher RD in 34 ROIs 

(Supplementary Fig. 1, Supplementary Table 6) with a medium-sized effect seen in the right 

EC (d=0.52). Higher AD was observed in 8 ROIs (Supplementary Fig. 2, Supplementary 

Table 7). 
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Age of onset and disease duration

Earlier age of seizure onset was significantly correlated (all p-values <.001) with 

longer disease duration across all patients (r=-0.58) and within each syndrome: GGE (r=-

0.39), left TLE-HS (r=-0.65), right TLE-HS (r=-0.66), left TLE-NL (r=-0.57), right TLE-NL 

(r=-0.54), and ExE (r=-0.54).

Across all epilepsy patients, earlier age of onset was associated with lower FA across 

28 ROIs (r=0.1 to 0.3, p<0.001), higher MD in 16 ROIs, and higher RD in 28 ROIs 

(Supplementary Tables 8, 10, 12). The most robust associations were observed between an 

earlier age of seizure onset and lower FA in the Average FA, GCC, and bilateral EC, and 

CGC (r’s between 0.16 and 0.19). There were no significant relationships between age of 

onset and AD in the “all epilepsies” group (Supplementary Table 14). 

Across all epilepsy patients, disease duration showed significant associations with 

diffusivity measures (Supplementary Tables 9, 11, 13, 15). A longer disease duration was 

associated with lower FA in 14 ROIs, increased MD in 9 ROIs, and increased RD in 27 

ROIs. Of note, longer disease duration was associated with lower FA in BCC, CGC, and EC, 

and with lower Average FA (r’s = -0.15 to -0.17). There were no significant relationships 

between disease duration and AD in all patients. 

TLE-HS group

TLE-HS patients vs healthy controls

Left TLE-HS patients (n=319) showed significantly lower FA than controls in 35 of 

38 ROIs (Fig. 3, Supplementary Table 4), with large ES differences in the left EC (d=-1.02), 

left CGH (d=-1.01), Average FA (d=-0.92), left CGC (d=-0.89), and left fornix/stria 

terminalis (FXST, d=-0.83). 
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Medium-sized effects were observed in GCC (d=-0.79), left SS (d=-0.78), BCC (d=-

0.75), right CGC (d=-0.68), right EC (d=-0.68), left superior longitudinal fasciculus (SLF, 

d=-0.67), left ACR (d=-0.66), left anterior limb of the internal capsule (ALIC, d=-0.61), left 

retrolenticular portion of the internal capsule (RLIC, d=-0.61), left uncinate (UNC, d=-0.61), 

right SLF (d=-0.58), left PCR (d=-0.54), right ACR (d=-0.53), and right SS (d=-0.52). 

Significantly higher MD was observed in 28 ROIs (Fig. 4, Supplementary Table 5), 

with medium-sized effects in the left EC (d=0.69), left SS (d=0.66), and average MD 

(d=0.55). Left TLE-HS patients showed significantly higher RD in 33 of 38 ROIs 

(Supplementary Fig. 1, Supplementary Table 6). A large effect of higher RD was observed 

for the left EC (d=0.83), and medium-sized effects were seen for the left SS (d=0.79), left 

CGC (d=0.69), left CGH (d=0.67), average RD (d=0.66), right EC (d=0.61), left FXST 

(d=0.59), left ACR (d=0.57), SLF (left d=0.56, right d=0.53), right ACR (d=0.52), and left 

RLIC (d=0.51). Higher AD was observed in five ROIs (Supplementary Figure 2, 

Supplementary Table 7).

Right TLE-HS patients (n=280) showed lower FA than controls in 26 of 38 ROIs 

(p<0.001; Fig. 3, Supplementary Table 4), with large effects observed for the average FA 

(d=-1.06), right CGH (d=-1.02), right EC (d=-0.99), right UNC (d=-0.90), BCC (d=-0.87), 

GCC (d=-0.85) and right SS (d=-0.83). Medium-sized effects were observed in the right ACR 

(d=-0.78), right CGC (d=-0.73), left EC (d=-0.68), left ACR (d=-0.68), left CGC (d=-0.68), 

left tapetum (TAP, d=-0.68), right PTR (d=-0.62), right FX/ST (d=-0.61), right SLF (d=-

0.59), right TAP (d=-0.59), right ALIC (d=-0.55), right PCR (d=-0.55), left SS (d=-0.55), and 

left SCR (d=-0.53). 

Higher MD in the patient group were observed in 23 ROIs (Fig. 4, Supplementary 

Table 5), with medium-sized effects shown in the right SS (d=0.67), right EC (d=0.62), right 

UNC (d=0.62), average MD (d=0.60) and right ACR (d=0.59). Significantly higher RD in the 
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patient group were observed in 31 ROIs (Supplementary Figure 1, Supplementary Table 6), 

with a large effect observed for the right EC (d=0.84), and medium effects seen for the right 

SS (d=0.76), right UNC (d=0.72), average RD (d=0.70), right ACR (d=0.69), left EC 

(d=0.63), right SLF (d=0.62), right CGH (d=0.61), right CGC (d=0.57), BCC (d=0.56), right 

FX/ST (d=0.52), and left ACR (d=0.51). Higher AD was observed in six ROIs 

(Supplementary Figure 2, Supplementary Table 7). 

Age of onset and disease duration

For left TLE-HS, earlier age of onset was associated with lower FA in 4 ROIs, 

including the Average FA, BCC, GCC, and left EC. Earlier age of seizure onset was 

associated with higher RD in 2 ROIs (Supplementary Tables 8, 12). There was no detected 

relationship between age of onset and either MD or AD in the left TLE-HS group 

(Supplementary Tables 10, 14). 

For right TLE-HS, earlier age of onset was related to lower FA across 9 ROIs, 

including the Average FA, BCC, SCC, right EC, left and right CGH, right PCR, and right 

SLF, increased MD in 7 ROIs, and increased RD in 7 ROIs (Supplementary Tables 8, 10, 

12). There was no detected relationship between age of onset and AD in the TLE-HS groups 

(Supplementary Table 14).

For left TLE-HS patients, longer disease duration was associated with lower FA in 

four ROIs (BCC, bilateral CGC, and left EC) and higher RD in one ROI (left SS). There were 

no significant relationships between disease duration and MD or AD (Supplementary Tables 

9, 11, 13, 15). For right TLE-HS, longer disease duration was associated with lower FA in 8 

ROIs (Average FA and SCC, bilateral TAP, and right CGH, EC, PCR, and UNC), higher MD 

in six ROIs, and higher RD in 10 ROIs. 
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TLE-NL group

TLE-NL vs healthy controls

The left TLE-NL patients (n=162) showed lower FA than controls in 20 ROIs (Fig. 3, 

Supplementary Table 4), higher MD in one ROI (Fig. 4, Supplementary Table 5), and higher 

RD in 6 ROIs (Supplementary Figure 1, Supplementary Table 6). No significant effects of 

AD were detected (Supplementary Figure 2, Supplementary Table 7).

Right TLE-NL patients (n = 113) showed significantly lower FA than controls in 19 

ROIs (p<0.001; Fig. 3, Supplementary Table 4), with medium-sized effects observed in the 

right EC (d=-0.64), right SS (d=-0.60), Average FA (d=-0.58), right CGH (d=-0.55), right 

CGC (d=-0.51) and right UNC (d=-0.50). MD was increased in three ROIs (p<0.001, Fig. 4, 

Supplementary Table 5), specifically the right EC (d=0.46), right UNC (d=0.42) and right SS 

(d=0.42). Significantly higher RD was observed in 4 ROIs (Supplementary Figure 1, 

Supplementary Table 6), with a medium-sized effect shown in the right EC (d=0.50). No 

significant effects of AD were detected (Supplementary Figure 2, Supplementary Table 7).

Age of onset and disease duration

For left TLE-NL, no diffusivity measure was associated with earlier age of onset or 

duration of illness (Supplementary Tables 8-15). 

For right TLE-NL patients, younger age of onset and was related to lower FA in the 

right UNC (r=0.30, p<0.001), but not MD, AD, or RD (Supplementary Tables 8, 10, 12, 14). 

Disease duration was also associated with decreased FA in the right UNC (r= =-0.37, 

p<0.001), but not MD, AD, or RD (Supplementary Tables 9, 11, 13, 15). 

Page 23 of 78

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

GGE group

GGE patients vs healthy controls

GGE patients (n=113) showed significantly lower FA than controls in 28 ROIs 

(p<0.001; Fig. 3, Supplementary Table 4), with medium-sized effects observed in the GCC 

(d=-0.57), left SLF (d=-0.57), left EC (d=-0.55), left RLIC (d=-0.51), right SLF (d=-0.51) 

and left PCR (d=-0.50). GGE patients showed higher RD in 4 ROIs (p<0.001, Supplementary 

Fig. 1, Supplementary Table 6). No significant effects were seen for MD or AD (Fig. 4, 

Supplementary Fig. 2, Supplementary Tables 5, 7). 

Age of onset and disease duration

For GGE patients, there was no significant association between diffusivity measures 

and either age of onset of epilepsy or its duration.

ExE group

ExE patients vs healthy controls

ExE patients (n=193) showed significantly lower FA than controls in 33 ROIs 

(p<0.001; Fig. 1, Supplementary Table 4), with medium-sized effects observed for Average 

FA (d=-0.75), BCC (d=-0.65), GCC (d=-0.64), right ACR (d=-0.63), bilateral EC (left d=-

0.60, right d=-0.58), left ALIC (d=-0.57), left ACR (d=-0.55), and right SS (d=-0.51). Higher 

MD was observed in 6 ROIs (p<0.001, Fig. 4, Supplementary Table 5) and RD in 22 ROIs 

(p<0.001, Supplementary Figure 1, Supplementary Table 6). No significant effects were seen 

in AD (Supplementary Figure 2, Supplementary Table 7).
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Age of onset and disease duration

For ExE patients, there were no significant associations between diffusivity measures 

and either age of onset of epilepsy, or its duration.

Cross-syndrome comparisons

Post-hoc comparisons were conducted across the syndromes in the five ROIs that 

showed the largest ES in the “all epilepsies” analysis, namely Average FA/MD, ACR, BCC, 

CGC, and EC averaged across hemispheres (Figure 5). ANCOVAs, adjusting for age, age2, 

sex, age of seizure onset, and disease duration revealed significant group differences in 

Average FA [F (5, 874) = 3.8, p<0.05], as well as FA of the CGC [F(5, 874) = 5.0, p<0.05] 

and EC [F(5, 874) = 5.8, p<0.05].  

There were differences across syndromes for the Average MD [F(5, 874) = 5.3, 

p<.05], ACR [F(5, 874) = 3.8, p<0.05], BCC [F(5, 874) = 4.9, p<0.05], CGC [F(5, 874) = 

4.2, p<0.05], and the EC [F(5, 874) = 6.2, p<0.05]. Patients with left and right TLE-HS 

generally showed lower FA and higher MD than TLE-NL patients, as well as lower 

FA/higher MD than GGEs in CGC and the EC. The nonlesional groups (GGE, TLE-NL, and 

ExE) did not differ from one another.  

Comparisons with other disorders

Given the many common white matter FA differences observed across epilepsy 

syndromes, the question arises as to whether these effects are specific to epilepsy or also seen 

with other brain disorders.  Figure 6 displays ES differences observed in the “all epilepsies” 

group (n=1,249) relative to findings from four other ENIGMA working groups: 

schizophrenia (SCZ; n=1,984; mean age, 36.2; 67% men), 22q11 syndrome (n=334; mean 

age, 16.9; 54% men), bipolar disorder (BP; n=1,482; mean age, 39.6; 39.3% men), and major 
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depressive disorder (MDD; n=921; mean age, 40.7; 39% men).  The magnitude of the ESs 

were typically larger in epilepsy, compared to the other disorders for most white matter 

regions. Across the white matter regions, ESs in patients with epilepsy were significantly 

correlated with those in patients with BP (Spearman’s rho r=0.53, p<0.05), SCZ (r=0.53, 

p<0.05), and MDD (r=0.44, p<0.05).   

Approach for multiple comparisons correction

Regional differences in diffusion parameters between syndromes and healthy controls 

were expressed as ESs (Cohen's d). In order to identify significant differences we adopted a 

Bonferroni correction that adjusted for testing 38 ROIs for each syndrome (p<0.001). 

However, an even more conservative approach corrects for each of the four diffusion metrics 

across the seven epilepsy syndromes. Implementing this very conservative Bonferroni cutoff 

would result in a threshold of p<0.05/(38*7*4)=4.7e-05. The combination of the large sample 

size and the observed medium to large effect sizes in the study results in most regional 

differences remaining significant even at the very conservative p-value threshold. However, 

in contrasts involving a smaller number of patients (controls compared to, e.g., GGE or TLE-

NL) more regions would lose the "significant" label due to the reduced statistical power. 

Despite these few exceptions, the exact p-value cutoff does not alter the main finding that 

there were widespread white matter abnormalities across epilepsy syndromes. We report all 

effect sizes and p-values in the supplementary material for researchers interested to examine 

these results with alternate definitions of statistical significance. 

Page 26 of 78

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

Discussion

This multi-site DTI study in epilepsy compared data from 1,249 patients with 

common epilepsy syndromes to 1,069 healthy controls. Data were acquired at 21 sites across 

North America, South America, Europe, and Australia and harmonized using the same post-

processing pipeline and batch effect harmonization tool.  

Our results reveal marked white matter alterations across epilepsy syndromes 

compared to controls, with varying magnitude of FA reduction and increased MD and RD. 

Effects were pronounced in patients with TLE-HS and modest in GGE. In TLE-HS, the 

greatest changes were seen ipsilateral to the seizure focus, implying a local effect. Notably, 

the magnitude of the diffusion changes was greater in epilepsy than that seen in SCZ, BP and 

MDD. The biological basis of reduced FA is considered primarily loss of axons and myelin 

sheaths, with increased RD and MD reflecting myelin disruption and increased extracellular 

space (Arfanakis et al., 2002; Concha et al., 2009). This raises the critical question of 

whether these diffusion abnormalities reflect the underlying pathologies that predispose to 

epilepsy, or if they are the consequence of epilepsy and are a biomarker of secondary 

damage. Since changes were more pronounced in those with a younger age of onset and 

longer duration of epilepsy, we hypothesize that the white matter changes represent likely 

secondary effects rather than being causal. However, a prospective longitudinal study of 

individuals from diagnosis onward is needed to answer this question. 

Although previous studies have investigated white matter alterations within a specific 

epilepsy syndrome, our study is the first to include a diverse aggregation of epilepsy 

syndromes and address the question of shared brain alterations across syndromes. This 

analysis revealed widespread reductions in FA across most association, commissural, and 

projection fibers bilaterally, with smaller effects of increased MD. The most robust 
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alterations were observed in frontocentral regions, including the genu and body of the CC, 

ACR, CGC, and EC. These regional changes mirror results from our structural MRI findings 

(Whelan et al., 2018), which revealed subcortical atrophy and neocortical thinning in fronto-

central, midline structures, including the thalamus, pallidum,  pre- and post central gyri, and 

superior frontal regions bilaterally. These regions showed the strongest association with both 

age of seizure onset and disease duration. Therefore, white matter abnormalities in these 

regions may be a result of both aberrant developmental (i.e., disruptions of late-myelinating 

pathways due to seizures; (Lee et al., 2013; Ostrowski et al., 2019) and degenerative (i.e., 

demyelination and/or axonal loss due to years of epilepsy, recurrent seizures, exposure to 

AEDs; (Günbey et al., 2011)) processes. Although lower FA and higher MD have been 

interpreted as reflecting a combination of pathological processes, we observed differences 

across syndromes to be driven primarily by higher RD supporting the concept that disrupted 

or altered myelin, rather than significant axonal loss, may underlie these changes (Arfanakis 

et al., 2002; Song et al., 2002; Concha et al., 2009). 

Temporal Lobe Epilepsy

A recent imaging-based meta-analysis (Slinger et al., 2016) found that patients with 

TLE had pronounced and widespread white matter injury relative to other patient syndromes.  

We found that this pattern was much more robust and ipsilateral in patients with HS, 

particularly in hippocampal afferent and efferent tracts, including the CGH, FX/ST, and 

UNC.  The proximity of these latter white matter regions to the epileptogenic zone, with 

changes being greater ipsilaterally than contralaterally, implies that these alterations are 

driven by intrinsic factors specific to the TLE-HS syndrome rather than long-term effects of 

AEDs.  Contrary to prior work (Ahmadi et al., 2009; Whelan et al., 2018), we did not find 
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greater abnormalities in patients with left TLE relative to right TLE in either the TLE-HS or 

TLE-NL groups, nor did we find greater injury in males with TLE relative to females. Rather, 

men with TLE-HS and TLE-NL showed higher global FA values relative to women. This 

contrasts with a previous meta-analysis that found men with focal epilepsy to be more 

vulnerable to white matter injury relative to women (Slinger et al., 2016). These findings do 

not appear to reflect differences in age, age of seizure onset, or disease duration, as these 

characteristics did not differ between men and women in our TLE cohorts. It has been 

reported that compared to age-matched women, men have greater white matter volume and 

neuronal number with fewer neuronal processes (Rabinowicz et al., 1999), which is 

hypothesized to represent fewer, thicker and more organized fibers in men compared to more 

crossing fiber tracts in women (Schmithorst et al., 2008). This hypothesis is supported by the 

finding that higher FA in males compared to females was also observed in our healthy control 

sample. 

Patients with TLE-NL showed a very mild pattern of white matter disruption 

compared to TLE-HS (Campos et al., 2015) (Fig. 3 and 4).  Although this may, in part, 

reflect the greater likelihood for patients with TLE-NL to have a milder form of epilepsy, 

previous studies have shown that even among drug-resistant TLE, patients with TLE-NL 

harbor less severe cortical (Bernhardt et al., 2016, 2019) and white matter (Liu et al., 2012) 

abnormalities compared to TLE-HS.  White matter disruptions in TLE-NL were notable in 

the EC and SS, both of which contain long-range association pathways.  In particular, the SS 

contains fibers of the inferior fronto-occipital fasciculus and the inferior longitudinal 

fasciculus (Goga et al., 2015). These fibers course through the temporal lobe lateral to the 

CGH and FX/ST supporting data suggesting that TLE-HS and TLE-NL involve different 

epileptogenic networks (Zaveri et al., 2001; Mueller et al., 2009). However, many FA/MD 

alterations did not differ between TLE-HS and TLE-NL patients, once age of seizure onset 
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and disease duration were taken into account (Fig. 5). Thus, the magnitude of these 

differences appears to be influenced by differences in clinical characteristics. This is 

supported by the association of an earlier age of seizure onset and longer disease duration 

with regional white matter disruption in TLE-HS, but not in TLE-NL.

Genetic generalized epilepsy

GGE includes several related syndromes, defined electrographically by generalized, 

bisynchronous, and symmetric activity with spike-wave or polyspike-wave discharges (Weir, 

1965; Seneviratne et al., 2012). These syndromes have traditionally been associated with 

thalamocortical dysfunction, with some studies reporting atrophy in the thalamus (Whelan et 

al., 2018) or thalamocortical networks (Bernhardt et al., 2009), and other studies reporting no 

structural changes relative to controls (McGill et al., 2014). Although patients with GGE 

showed modest alterations relative to patients with focal epilepsy across most fibers, these 

differences were broader than those previously observed (Slinger et al., 2016) and include 

commissural (GCC), projection (ACR) and corticocortical association pathways (EC, SLF). 

In addition, the magnitude of these changes in the ACR was similar to those observed in 

other epilepsy syndromes after adjusting for clinical and demographic characteristics (Fig. 5). 

The ACR is part of the limbic-thalamo-cortical circuitry and includes thalamic projections 

from the internal capsule to the cortex, including prominent connections to the frontal lobe 

bilaterally (Catani et al., 2002; Wakana et al., 2004). Thus, degradation of these projection 

fibers supports the hypothesis that frontothalamic pathology is present in patients with GGE, 

including juvenile myoclonic epilepsy (JME) (Woermann et al., 1999; Keller et al., 2011).
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Extratemporal epilepsy 

The group of patients with non-lesional focal ExE showed the most marked 

alterations in the BCC, GCC, ACR, CGC, and EC, and showed a similar pattern to the GGE 

group of bilateral fronto-central alterations. As frontal lobe epilepsy is the second most 

common type of focal epilepsy (Manford et al., 1992), it is likely that this group dominated 

the ExE group, explaining the predominance of fronto-midline pathology. Unlike the TLE-

HS, neither age of seizure onset nor disease duration were associated with regional white 

matter compromise. This may be related to the heterogeneity of this patient group, their later 

age of seizure onset and/or the fact that this non-lesional group may represent a “mild” form 

of ExE. 

Summary

In summary, we found shared white matter compromise across epilepsy syndromes, 

dominated by regional alterations in bilateral midline, fiber bundles. The question arises as to 

whether these shared alterations are specific to epilepsy or are non-specific effects of a 

chronic brain disorder. Comparison of our ES to those of five other ENIGMA populations 

revealed that the pattern of microstructural compromise in epilepsy was similar to, but more 

robust than, the patterns observed in BP, SCZ, and MDD. In particular, the CC body and 

genu were commonly affected across disorders, suggesting that microstructural compromise 

could reflect a shared patho-physiological mechanism. However, patients with epilepsy tend 

to have high rates of comorbid mood disorder (Kanner, 2006) and these were not 

characterized in our epilepsy sample. Therefore, overlap in white matter changes between our 

epilepsy cohort and major neuropsychiatric disorders could reflect the presence of comorbid 

psychiatric symptoms in our patients. Increasing evidence suggests that neuropsychiatric 

disorders themselves are not separated by sharp neurobiological boundaries (Baker et al., 
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2019), but have overlapping of genetic influences and brain dysfunction (Brainstorm 

Consortium et al., 2018; Radonjić et al., 2019). Although genetic overlap between these 

neuropsychiatric disorders and epilepsy is low, overlap in dysfunctional brain networks may 

be partly due to comorbidities, and warrants further investigation.

Limitations

First, although much effort was taken to apply post-acquisition harmonization, each 

scanner varied in either its image acquisition protocol or scanner hardware, or both, which 

increased methodological heterogeneity. Conversely, our results can be considered 

independent of any specific acquisition scheme, head coil or scanner model. Accordingly, 

while the absence of a single, standardized MR protocol incorporates scanner variance into 

the data, it also provides breadth that enhances the generalizability of findings. Due to the 

fact that some sites had a small sample of patients within a particular syndrome or no control 

data, we were unable to adequately implement statistical approaches that could specifically 

address site/sample bias. The statistical batch normalization process ComBat corrected 

differences between scanner instances, but may not adequately accommodate the 

heterogeneous neuropathology of epilepsy, resulting in a ‘smoothing out’ of differences 

between syndromes. 

A second limitation is the challenge of directly ascribing lower FA and higher MD to 

demyelination and/or axonal injury. Specifically, lower FA can reflect the effects of crossing 

fibers, increases in extracellular diffusion (e.g., inflammation, edema) or other technical or 

biological factors. Therefore, advanced diffusion sequences such as high angular resolution 

diffusion imaging and multishell dMRI acquisitions, together with analysis of quantitative 

contrasts sensitive to tissue microstructural features and neuropathological investigations, 

would help better unravel the biological underpinnings of our findings.
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The GGE and ExE subgroups represented heterogeneous cohorts, which may have 

contributed to the weaker effects noted in these groups relative to TLE-HS. Although we 

were underpowered in this study to divide our GGE and ExE patients into more specific 

syndromes, future studies of more targeted syndromes (i.e., JME) would be beneficial. 

Similarly, although all of the patients in our study were diagnosed according to ILAE 

guidelines, many patients did not receive intracranial EEG (iEEG). In practice, only a very 

small proportion of people with epilepsy ever have iEEG. Therefore, we cannot rule out the 

possibility that some patients were misclassified or had multi-focal seizure onsets that were 

not detected. The lack of iEEG and postoperative outcome data on all participants also made 

it challenging to further characterize our ExE patients according to seizure laterality or more 

specific seizure onset, or to confirm that our TLE-NL group did not include patients with 

seizure arising from other locations. Furthermore, the lack of clinical data prevented us from 

directly assessing how these diffusional changes were associated with specific AED 

regimens, comorbid disorders, cognitive performances, or how they relate to clinical 

outcomes (i.e., drug resistance or post-operative seizure outcome). These data are now being 

collected across the consortium to better characterize patients and evaluate the clinical utility 

of identifying syndrome-specific and shared microstructural injury in epilepsy.  

Conclusions and Clinical Implications

In the largest DTI mega-analysis of epilepsy, we demonstrate a pattern of robust 

white matter alterations within and across patient syndromes, revealing shared and unique 

features for each syndrome. These patterns of white matter injury may help to explain 

cognitive impairments associated with each syndrome [e.g., the extent of memory 

impairment in TLE has been linked to the extent of CGH and UNC damage (McDonald et 

al., 2008)], as well as across syndrome similarities in cognitive profiles [e.g., patients with 
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TLE and GGE both present with executive dysfunction that may reflect their shared fronto-

central white matter damage; (Abarrategui et al., 2018; Reyes et al., 2018)]. The extent of 

microstructural injury may also help to predict postsurgical seizure (Bonilha et al., 2015) and 

cognitive (McDonald et al., 2014) outcomes, or to inform which patients will respond to 

AEDs (Park et al., 2020). Finally, cross-syndrome and cross-disease comparisons could help 

to inform gene expression studies and provide novel insights into shared psychiatric co-

morbidities.
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Figures and Tables

Table 1. Characteristics of the patient and control samples by site.
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Table 2. Demographic and clinical characteristics of the total sample. Post-hoc 
comparisons revealed that controls were younger than both TLE-HS groups and older than 
patients with GGE and ExE (all p-values<0.05).  Both TLE-HS groups and the left TLE-NL 
group were older than the GGE and ExE groups (p<0.05). The right TLE-HS group was older 
than both TLE-NL groups (p<0.05). 

 N Age (SD) Sex          
(% Male)

Age of 
onset (SD)

Duration of 
illness (SD)

Controls 1,069 35.5 (11.7) 41.7 ----- -----

All patients 1,249 36.1 (11.2) 42.9 16.3 (11.3) 19.9 (13.0)

Left TLE-HS 319 38.3 (10.6) 43.3 14.5 (11.5) 24.2 (13.3)

Right TLE-HS 280 39.3 (10.8) 42.5 15.3 (11.6) 24.1 (13.9)

Left TLE-NL 162 36.1 (10.9) 38.3 18.8 (11.6) 17.1 (12.1)

Right TLE-NL 113 35.1 (11.4) 37.2 19.5 (12.2) 15.1 (11.2)

GGE 182 31.8 (9.9) 44.5 14.8 (7.3) 16.8 (10.5)

ExE 193 32.7 (11.5) 43.5 17.6 (11.1) 15.1 (11.5)

Figure 1. Fiber atlas.

Figure 2.  dMRI harmonization using ComBat. Average FA (top) and MD (bottom) 
measures across 24 scanners showing differences in mean FA measures per scanner (left) 
which are harmonized using ComBat (middle). The process corrects the variance in scanner 
without altering the biological variance expected with age (right). Red= before correction; 
Blue= after correction.

Figure 3. FA Effect Size Bar Graphs

Figure 4. MD Effect Size Bar Graphs
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Figure 5. Syndromic difference in average FA and MD in five ROIs. Mean FA (left) and 
MD (right) for each patient syndrome, controlling for age, age2, sex, age of onset, and disease 
duration. Error bars reflect 95% confidence intervals. Dotted red lines reflect the means of 
controls. For FA, Average=0.585, ACR=0.481, BCC=0.690, CGC=0.627, EC=0.484. For 
MD, Average=0.000801, ACR=0.000741, BCC=0.000881, CGC=0.000733, EC=0.000739. 
Significant differences are marked with asterisks (* for p<0.05, ** for p<0.01, *** for 
p<0.001).

Figure 6. A).  Heat map of FA effect sizes for the “all epilepsies” group compared to 
those in four other ENIGMA disorders:  SCZ = schizophrenia; BP = bipolar disorder; 
MDD = major depressive disorder.  B). Radar plot of the four disorders that showed 
significant correlations across white matter tracts.  Positive values reflect patient group 
values were on average higher than controls, whereas negative values reflect cases where 
patient group values were on average lower than that of controls.  

Page 47 of 78

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

 

Figure 1. Fiber atlas. 
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Figure 2.  dMRI harmonization using ComBat. Average FA (top) and MD (bottom) measures across 24 
scanners showing differences in mean FA measures per scanner (left) which are harmonized using ComBat 

(middle). The process corrects the variance in scanner without altering the biological variance expected with 
age (right). Red= before correction; Blue= after correction. 
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Figure 3. FA Effect Size Bar Graphs 
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Figure 4. MD Effect Size Bar Graphs 
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Figure 5. Syndromic difference in average FA and MD in five ROIs. Mean FA (left) and MD (right) for each 
patient syndrome, controlling for age, age2, sex, age of onset, and disease duration. Error bars reflect 95% 

confidence intervals. Dotted red lines reflect the means of controls. For FA, Average=0.585, ACR=0.481, 
BCC=0.690, CGC=0.627, EC=0.484. For MD, Average=0.000801, ACR=0.000741, BCC=0.000881, 

CGC=0.000733, EC=0.000739. Significant differences are marked with asterisks (* for p<0.05, ** for 
p<0.01, *** for p<0.001). 
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Figure 6. A).  Heat map of FA effect sizes for the “all epilepsies” group compared to those in four other 
ENIGMA disorders:  SCZ = schizophrenia; BP = bipolar disorder; MDD = major depressive disorder.  B). 
Radar plot of the four disorders that showed significant correlations across white matter tracts.  Positive 

values reflect patient group values were on average higher than controls, whereas negative values reflect 
cases where patient group values were on average lower than that of controls.   
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Supplementary Table 1. Scanner protocols by each research center. An asterisk (*) indicates a variable TR due to cardiac gating. 

Center Scanner Orientation # of Slices Voxel Size (mm3) 
Gradient  

Directions 

b-value  

(mm/s2) 

# b=0 

scans 
TE (ms) TR (ms) Relevant Citation 

Bonn Siemens Trio Axial 160 1 x 1 x 1 60 1000 7 3.97 1300 

Kreilkamp, B. A., Weber, B., 

Richardson, M. P., & Keller, S. S. 

(2017). Automated tractography in 

patients with temporal lobe epilepsy 

using TRActs Constrained by 

UnderLying Anatomy 

(TRACULA). NeuroImage: 

Clinical,14, 67-76. 

doi:10.1016/j.nicl.2017.01.003 

CUBRIC GE Signa HDx - 60 2.4 mm slice thickness 30 1200 3 87 * 

Caeyenberghs, K., Powell, H., 

Thomas, R., Brindley, L., Church, C., 

Evans, J., . . . Hamandi, K. (2015). 

Hyperconnectivity in juvenile 

myoclonic epilepsy: A network 

analysis. NeuroImage: Clinical,7, 98-

104. doi:10.1016/j.nicl.2014.11.018 

EKUT Siemens Trio - 52 1.81 x 1.81 x 1.79 48 1200 (2x) 6 (2x) 93 9400 - 

EPICZ 
GE Discovery 

MR750 
Axial 80 2 x 2 x 2 27 1000 4 81.4 10000 

Caligiuri, M. E., Labate, A., 

Cherubini, A., Mumoli, L., Ferlazzo, 

E., Aguglia, U., . . . Gambardella, A. 

(2016). Integrity of the corpus 

callosum in patients with benign 

temporal lobe 

epilepsy. Epilepsia,57(4), 590-596. 

doi:10.1111/epi.13339 

EPIGEN-Ireland Philips Achieva Axial 70 1.75 x 1.75 x 2 32 1000 - 52 12786 

Whelan, C. D., Alhusaini, S., 

Ohanlon, E., Cheung, M., Iyer, P. M., 

Meaney, J. F., . . . Cavalleri, G. L. 

(2015). White matter alterations in 

patients with MRI-negative temporal 

lobe epilepsy and their asymptomatic 

siblings. Epilepsia,56(10), 1551-

1561. doi:10.1111/epi.13103 

Florence Philips Achieva - 69 2 x 2 x 2 32 1000 1 80 4000 - 

Genova Philips Ingenia Axial 65 2 x 2 x 2 64 1000 1 90 7000 - 

Greifswald Siemens Verio - 80 1.8 x 1.8 x 1.8 64 1000 1 107 15300 

Domin, M., Bartels, S., Geithner, J., 
Wang, Z. I., Runge, U., Grothe, M., . . . 

Podewils, F. V. (2018). Juvenile 
Myoclonic Epilepsy Shows Potential 

Structural White Matter Abnormalities: 

A TBSS Study. Frontiers in 
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Neurology,9. 

doi:10.3389/fneur.2018.00509 

Henry Ford GE Signa Axial 60 1.96 × 1.96 × 2.6 25 1000 1 76 7500 

Nazem-Zadeh, M., Bowyer, S. M., 

Moran, J. E., Davoodi-Bojd, E., 

Zillgitt, A., Weiland, B. J., . . . 

Soltanian-Zadeh, H. (2016). MEG 

Coherence and DTI Connectivity in 

mTLE. Brain Topography,29(4), 

598-622. doi:10.1007/s10548-016-

0488-0 

IDIBAPS_31DIR Siemens Trio Axial 55 2.4 x 2.4 x 2.4 30 1000 1 90 6900 

 

IDIBAPS_39DIR Siemens Trio Axial 64 1.97 x 1.97 x 2 36 1000 3 88 8138 

Córdova-Palomera, A., Reus, M. A., 

Fatjó-Vilas, M., Falcón, C., Bargalló, 

N., Heuvel, M. P., & Fañanás, L. 

(2016). FKBP5 modulates the 

hippocampal connectivity deficits in 

depression: A study in twins. Brain 

Imaging and Behavior,11(1), 62-75. 

doi:10.1007/s11682-015-9503-4 

IDIBAPS_88DIR Siemens Trio Axial 55 1.25 x 1.25 x 2.5 82 1000 6 98 7600 

Aparicio, J., Carreño, M., Bargalló, 

N., Setoain, X., Rubí, S., Rumià, J., . 

. . Donaire, A. (2016). Combined 18 

F-FDG-PET and diffusion tensor 

imaging in mesial temporal lobe 

epilepsy with hippocampal 

sclerosis. NeuroImage: Clinical,12, 

976-989. 

doi:10.1016/j.nicl.2016.05.002 

KCL 
GE Discovery 

MR750 
Axial 66 2.4 x 2.4 x 2.4 32 1000 6 75 * 

- 

Liverpool_Walton 
GE Discovery 

MR750 
Axial 66 1 x 1 x 2 60 1000 6 82 8000 

Kreilkamp, B. A., Weber, B., 

Richardson, M. P., & Keller, S. S. 

(2017). Automated tractography in 

patients with temporal lobe epilepsy 

using TRActs Constrained by 

UnderLying Anatomy 

(TRACULA). NeuroImage: 

Clinical,14, 67-76. 

doi:10.1016/j.nicl.2017.01.003 

MNI Siemens Trio Axial 63 2 x 2 x 2 64 1000 1 90 8400 

Liu, M., Bernhardt, B. C., Hong, S., 

Caldairou, B., Bernasconi, A., & 

Bernasconi, N. (2016). The 

superficial white matter in temporal 

lobe epilepsy: A key link between 

structural and functional network 

disruptions. Brain,139(9), 2431-

2440. doi:10.1093/brain/aww167 

NYU Siemens Allegra Axial 60 2.5 x 2.5 x 2.5 64 3000 8 99 7900 - 
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Melbourne Siemens Trio Axial 55 2.5 x 2.5 x 2.5 64 3000 1 122 8700 - 

UCL GE Signa HDx Axial 60 1.875×1.875×2.4 52 1200 6 73 * 

Taylor, P. N., Sinha, N., Wang, Y., 

Vos, S. B., Tisi, J. D., Miserocchi, 

A., . . . Duncan, J. S. (2018). The 

impact of epilepsy surgery on the 

structural connectome and its relation 

to outcome. NeuroImage: 

Clinical,18, 202-214. 

doi:10.1016/j.nicl.2018.01.028 

UCSD 
GE Discovery 

MR750 
Axial 53 1.86 x 1.86 x 2.5 30 1000 2 82.9 8000 

Reyes, A., Paul, B. M., Marshall, A., 

Chang, Y. A., Bahrami, N., Kansal, 

L., . . . Mcdonald, C. R. (2018). Does 

bilingualism increase brain or 

cognitive reserve in patients with 

temporal lobe 

epilepsy? Epilepsia,59(5), 1037-

1047. doi:10.1111/epi.14072 

UMG Siemens Trio - 31 1.89 x 1.89 x 1.89 30 1000 1 93 10000 

Bonilha, L., Gleichgerrcht, E., 

Fridriksson, J., Rorden, C., 

Breedlove, J. L., Nesland, T., . . . 

Focke, N. K. (2015). Reproducibility 

of the Structural Brain Connectome 

Derived from Diffusion Tensor 

Imaging. Plos One,10(9). 

doi:10.1371/journal.pone.0135247 

UNAM Philips Achieva - - 2 x 2 x 2 60 2000 1 64.3 11860 

Rodríguez-Cruces, R., Velázquez-

Pérez, L., Rodríguez-Leyva, I., 

Velasco, A. L., Trejo-Martínez, D., 

Barragán-Campos, H. M., . . . 

Concha, L. (2018). Association of 

white matter diffusion characteristics 

and cognitive deficits in temporal 

lobe epilepsy. Epilepsy & 

Behavior,79, 138-145. 

doi:10.1016/j.yebeh.2017.11.040 

UNICAMP Philips Achieva Axial 70 2 x 2 x 2 32 1000 1 61 8500 

Campos, B. M., Coan, A. C., 

Beltramini, G. C., Liu, M., Yassuda, 

C. L., Ghizoni, E., . . . Cendes, F. 

(2014). White matter abnormalities 

associate with type and localization 

of focal epileptogenic 

lesions. Epilepsia,56(1), 125-132. 

doi:10.1111/epi.12871 
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Supplementary Table 2. Descriptive statistics before and after ComBat harmonization. 
   

Before harmonization After harmonization 

Diffusivity measure Diagnostic group n Mean SD Mean SD 

FA 

Controls 1069 0.586 0.053 0.585 0.021 

GGE 182 0.596 0.069 0.575 0.022 

TLE-HS-Left 319 0.561 0.051 0.565 0.027 

TLE-HS-Right 280 0.556 0.055 0.560 0.031 

TLE-NL-Left 162 0.569 0.043 0.574 0.026 

TLE-NL-Right 113 0.566 0.041 0.575 0.027 

ExE 193 0.566 0.053 0.569 0.027 

MD 

Controls 977 8.02E-04 1.88E-04 8.03E-04 5.45E-05 

GGE 120 7.98E-04 1.50E-04 8.06E-04 5.99E-05 

TLE-HS-Left 295 8.39E-04 2.19E-04 8.33E-04 6.34E-05 

TLE-HS-Right 242 8.31E-04 1.89E-04 8.39E-04 6.41E-05 

TLE-NL-Left 162 8.30E-04 2.20E-04 8.11E-04 5.80E-05 

TLE-NL-Right 113 9.13E-04 2.48E-04 8.16E-04 6.29E-05 

ExE 180 7.58E-04 1.24E-04 8.21E-04 5.95E-05 

AD 

Controls 975 1.33E-03 1.62E-04 1.33E-03 1.03E-04 

GGE 120 1.30E-03 6.24E-05 1.31E-03 1.06E-04 

TLE-HS-Left 295 1.34E-03 2.03E-04 1.34E-03 1.08E-04 

TLE-HS-Right 242 1.34E-03 1.66E-04 1.34E-03 9.81E-05 

TLE-NL-Left 162 1.33E-03 2.29E-04 1.32E-03 9.14E-05 

TLE-NL-Right 113 1.44E-03 5.13E-04 1.33E-03 1.54E-04 

ExE 180 1.26E-03 1.96E-04 1.32E-03 9.40E-05 

RD 

Controls 977 5.53E-04 2.52E-04 5.59E-04 5.58E-05 

GGE 120 5.47E-04 2.11E-04 5.69E-04 6.20E-05 

TLE-HS-Left 295 6.18E-04 3.04E-04 5.98E-04 6.76E-05 

TLE-HS-Right 242 5.97E-04 2.63E-04 6.05E-04 7.04E-05 

TLE-NL-Left 162 5.97E-04 2.74E-04 5.70E-04 6.06E-05 

TLE-NL-Right 113 7.03E-04 3.46E-04 5.75E-04 6.24E-05 

ExE 180 5.05E-04 1.16E-04 5.83E-04 6.45E-05 
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Supplementary Table 3. Multivariate tests. Increasing values of Pillai's trace indicate effects that 

contribute more to the model. 

Measure Effect Pillai's 

Trace 

F Hypothesis df Error df Sig. Partial η2 Observed 

Power 

FA Diagnosis 0.44 4.70 228 13452 <0.001 0.074 1.0 

 Age 0.05 2.90 38 2237 <0.001 0.047 1.0 

 Age2 0.04 2.33 38 2237 <0.001 0.038 1.0 

 Sex 0.14 9.27 38 2237 <0.001 0.136 1.0 

 Sex*Diagnosis 0.13 1.33 228 13416 0.001 0.022 1.0 

MD Diagnosis 0.31 2.80 228 11688 <0.001 0.052 1.0 

 Age 0.07 3.67 38 1943 <0.001 0.067 1.0 

 Age2 0.05 2.94 38 1943 <0.001 0.054 1.0 

 Sex 0.12 6.77 38 1943 <0.001 0.117 1.0 

 Sex*Diagnosis 0.13 1.08 228 11652 0.870 0.021 1.0 

AD Diagnosis 0.22 1.96 228 11946 <0.001 0.036 1.0 

 Age 0.07 4.05 38 1986 <0.001 0.072 1.0 

 Age2 0.05 2.98 38 1986 <0.001 0.054 1.0 

 Sex 0.10 5.77 38 1986 <0.001 0.099 1.0 

 Sex*Diagnosis 0.12 1.07 228 11910 0.215 0.020 1.0 

RD Diagnosis 0.36 3.28 228 11790 <0.001 0.060 1.0 

 Age 0.07 4.16 38 1960 <.001 0.075 1.0 

 Age2 0.06 3.58 38 1960 <.001 0.065 1.0 

  Sex 0.11 6.65 38 1960 <.001 0.114 1.0 

 Sex*Diagnosis 0.13 1.18 228 11754 0.033 0.022 1.0 
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Supplementary Figure 1. RD effect size graphs. 
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Supplementary Figure 2. AD effect size graphs. 
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Supplementary Table 4. Effect sizes for FA differences between healthy controls and each syndrome. 
 

All Epilepsies L TLE-HS R TLE-HS L TLE-NL R TLE-NL GGE ExE 

ROI Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value 

AverageFA -0.71 2.3E-59 -0.92 6.6E-40 -1.06 5.4E-46 -0.48 1.8E-07 -0.58 4.8E-08 -0.49 4.5E-10 -0.75 1.1E-19 

BCC -0.59 1.3E-45 -0.75 1.0E-26 -0.87 2.9E-34 -0.46 1.1E-07 -0.37 1.1E-04 -0.44 1.8E-08 -0.73 9.4E-20 

GCC -0.59 1.5E-43 -0.79 2.6E-28 -0.85 2.4E-33 -0.39 9.8E-06 -0.40 9.9E-05 -0.57 1.1E-11 -0.64 9.5E-16 

SCC -0.36 4.9E-17 -0.48 1.7E-10 -0.41 6.6E-10 -0.21 2.9E-02 -0.31 0.005 -0.39 1.1E-06 -0.42 4.2E-07 

ACR.L -0.50 3.0E-32 -0.66 1.1E-21 -0.68 3.4E-22 -0.32 2.0E-04 -0.28 0.006 -0.35 3.9E-06 -0.55 9.8E-13 

ACR.R -0.52 1.2E-33 -0.53 3.7E-14 -0.78 2.0E-27 -0.37 6.1E-05 -0.37 4.0E-04 -0.40 6.3E-07 -0.63 2.8E-14 

ALIC.L -0.48 7.0E-26 -0.61 5.6E-20 -0.45 1.1E-09 -0.35 4.4E-05 -0.29 0.002 -0.44 5.7E-07 -0.57 8.6E-12 

ALIC.R -0.34 1.8E-15 -0.28 9.8E-06 -0.55 2.8E-15 -0.21 0.016 -0.22 0.024 -0.21 0.006 -0.49 2.1E-09 

CGC.L -0.57 2.7E-38 -0.89 1.6E-36 -0.68 3.2E-21 -0.25 0.004 -0.42 2.4E-05 -0.46 4.6E-08 -0.49 8.2E-10 

CGC.R -0.50 8.3E-34 -0.68 2.6E-24 -0.75 1.2E-25 -0.23 0.008 -0.51 5.9E-07 -0.42 3.8E-07 -0.48 4.1E-09 

CGH.L -0.52 3.3E-35 -1.01 1.4E-50 -0.46 9.6E-11 -0.36 1.5E-05 -0.33 7.1E-04 -0.41 2.5E-07 -0.41 3.7E-07 

CGH.R -0.48 6.0E-30 -0.43 6.0E-11 -1.02 8.4E-46 -0.23 0.012 -0.55 5.2E-08 -0.30 2.1E-04 -0.36 6.6E-06 

CST.L -0.09 0.009 -0.05 0.319 -0.29 9.0E-05 -0.07 0.378 0.00 0.921 -0.02 0.729 -0.11 0.140 

CST.R -0.10 0.021 -0.10 0.099 -0.19 0.002 0.00 0.910 -0.02 0.722 0.00 0.935 -0.15 0.072 

EC.L -0.64 5.3E-53 -1.02 4.6E-49 -0.73 1.8E-25 -0.47 1.1E-07 -0.47 2.1E-06 -0.55 3.7E-12 -0.60 5.4E-14 

EC.R -0.63 2.7E-47 -0.68 4.7E-25 -0.99 2.3E-42 -0.41 1.5E-06 -0.64 2.6E-10 -0.42 7.7E-07 -0.58 2.0E-13 

FX.ST.L -0.41 1.6E-23 -0.83 4.8E-33 -0.41 4.0E-09 -0.27 0.002 -0.14 0.175 -0.36 7.3E-06 -0.32 3.1E-05 

FX.ST.R -0.40 8.5E-21 -0.47 1.1E-12 -0.61 1.7E-18 -0.15 0.050 -0.34 9.3E-04 -0.37 7.5E-06 -0.33 4.4E-05 

PCR.L -0.38 1.9E-21 -0.54 1.9E-14 -0.37 2.2E-08 -0.32 4.3E-04 -0.32 0.003 -0.50 4.1E-10 -0.35 1.5E-05 

PCR.R -0.41 4.9E-23 -0.46 1.1E-11 -0.55 1.3E-15 -0.32 1.3E-04 -0.25 0.012 -0.39 3.8E-07 -0.39 2.6E-07 

PLIC.L -0.17 7.0E-06 -0.25 9.9E-05 -0.14 0.066 -0.14 0.119 -0.15 0.122 -0.22 0.003 -0.21 0.009 

PLIC.R -0.18 1.4E-05 -0.15 0.009 -0.24 2.1E-04 -0.15 0.079 -0.18 0.065 -0.07 0.195 -0.18 0.009 

PTR.L -0.40 5.3E-20 -0.48 2.4E-11 -0.41 6.5E-10 -0.42 3.9E-06 -0.27 0.006 -0.33 1.7E-05 -0.41 3.8E-07 

PTR.R -0.41 2.0E-21 -0.43 6.8E-09 -0.62 1.2E-18 -0.32 2.9E-04 -0.35 5.5E-04 -0.34 8.0E-05 -0.42 4.1E-07 

RLIC.L -0.40 1.4E-20 -0.61 2.1E-18 -0.31 1.9E-06 -0.26 0.002 -0.29 0.006 -0.51 2.3E-10 -0.28 1.6E-04 

RLIC.R -0.37 1.8E-17 -0.39 3.0E-09 -0.47 2.9E-11 -0.29 6.1E-04 -0.32 9.5E-04 -0.36 5.8E-06 -0.26 7.3E-04 

SCR.L -0.42 3.0E-22 -0.40 4.4E-09 -0.53 3.2E-13 -0.27 8.1E-04 -0.31 0.002 -0.44 1.4E-08 -0.47 4.2E-09 

Page 62 of 78

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

SCR.R -0.39 3.1E-18 -0.40 1.3E-08 -0.46 4.8E-12 -0.32 7.9E-04 -0.36 0.001 -0.28 3.2E-04 -0.39 2.6E-07 

SFO.L -0.34 1.1E-15 -0.43 4.1E-11 -0.37 6.3E-08 -0.18 4.5E-02 -0.13 0.169 -0.35 1.8E-05 -0.42 4.5E-08 

SFO.R -0.26 1.6E-09 -0.26 4.3E-05 -0.47 5.0E-11 -0.16 7.7E-02 -0.05 0.702 -0.08 0.332 -0.36 9.6E-06 

SLF.L -0.47 1.5E-28 -0.67 2.3E-23 -0.43 2.6E-09 -0.30 4.6E-04 -0.34 4.5E-04 -0.57 5.0E-12 -0.43 6.5E-08 

SLF.R -0.48 2.0E-32 -0.58 7.7E-18 -0.59 2.3E-17 -0.32 1.5E-04 -0.46 3.4E-06 -0.51 4.8E-11 -0.49 4.1E-10 

SS.L -0.55 6.4E-36 -0.78 1.2E-29 -0.55 1.4E-16 -0.46 1.0E-07 -0.44 2.2E-05 -0.41 9.9E-07 -0.43 1.4E-07 

SS.R -0.52 6.3E-35 -0.52 4.3E-14 -0.83 2.0E-31 -0.42 1.1E-06 -0.60 9.7E-09 -0.37 2.1E-05 -0.51 5.8E-10 

TAP.L -0.35 2.8E-15 -0.40 2.1E-09 -0.68 6.7E-22 -0.15 0.091 -0.10 0.398 -0.15 0.057 -0.32 9.8E-05 

TAP.R -0.29 1.4E-12 -0.33 2.0E-06 -0.59 9.1E-18 -0.07 0.308 -0.21 0.035 -0.19 0.033 -0.24 0.002 

UNC.L -0.33 4.1E-16 -0.61 1.9E-19 -0.28 3.2E-05 -0.19 0.019 -0.17 0.071 -0.21 0.008 -0.38 1.6E-06 

UNC.R -0.40 2.1E-20 -0.32 8.3E-07 -0.90 9.3E-37 -0.04 0.698 -0.50 8.5E-07 -0.15 0.067 -0.37 3.6E-06 
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Supplementary Table 5. Effect sizes for MD differences between healthy controls and each syndrome. 
 

All Epilepsies L TLE-HS R TLE-HS L TLE-NL R TLE-NL GGE ExE 

ROI Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value 

AverageMD 0.37 3.3E-16 0.55 3.4E-15 0.60 3.8E-15 0.20 0.020 0.21 0.039 -0.02 0.813 0.34 4.9E-05 

BCC 0.23 3.2E-07 0.37 1.2E-07 0.46 1.9E-09 0.00 1.000 0.13 0.212 -0.13 0.200 0.24 0.004 

GCC 0.14 0.002 0.28 4.0E-05 0.32 2.7E-05 -0.14 0.101 0.05 0.604 -0.14 0.157 0.17 0.041 

SCC 0.06 0.210 0.11 0.123 0.20 0.007 -0.15 0.088 -0.09 0.398 -0.14 0.154 0.15 0.079 

ACR.L 0.32 2.5E-12 0.49 1.3E-12 0.44 6.7E-09 0.10 0.227 0.12 0.228 0.16 0.121 0.33 8.4E-05 

ACR.R 0.34 2.7E-14 0.39 1.4E-08 0.59 1.5E-14 0.17 0.044 0.21 0.042 0.21 0.033 0.29 4.0E-04 

ALIC.L 0.14 0.002 0.33 1.4E-06 0.17 0.024 0.05 0.530 0.07 0.472 -0.15 0.127 0.09 0.299 

ALIC.R 0.15 8.1E-04 0.21 0.002 0.30 7.5E-05 0.08 0.351 0.21 0.044 -0.06 0.535 0.06 0.504 

CGC.L 0.17 1.1E-04 0.39 2.0E-08 0.18 0.017 0.06 0.463 0.06 0.533 -0.12 0.233 0.18 0.035 

CGC.R 0.18 4.6E-05 0.27 8.7E-05 0.34 6.6E-06 0.05 0.578 0.08 0.464 -0.13 0.197 0.24 0.004 

CGH.L 0.17 1.7E-04 0.48 6.1E-12 0.13 0.087 0.00 0.958 -0.01 0.896 -0.09 0.384 0.15 0.078 

CGH.R 0.15 6.4E-04 0.20 0.004 0.37 1.4E-06 -0.02 0.816 0.22 0.036 -0.10 0.302 0.08 0.345 

CST.L 0.02 0.670 0.01 0.936 0.03 0.737 0.11 0.220 0.05 0.663 -0.18 0.070 0.05 0.540 

CST.R 0.01 0.780 0.05 0.454 0.01 0.937 0.09 0.287 0.02 0.819 -0.26 0.009 0.07 0.427 

EC.L 0.34 4.2E-14 0.69 1.3E-22 0.41 9.0E-08 0.24 0.005 0.27 0.008 -0.06 0.566 0.17 0.040 

EC.R 0.38 1.1E-16 0.48 6.3E-12 0.62 6.3E-16 0.26 0.002 0.46 1.0E-05 0.03 0.772 0.25 0.003 

FX.ST.L 0.14 0.002 0.42 1.8E-09 0.02 0.748 0.02 0.780 0.10 0.325 -0.14 0.168 0.12 0.161 

FX.ST.R 0.19 3.3E-05 0.25 3.5E-04 0.43 1.8E-08 -0.05 0.586 0.11 0.274 -0.03 0.795 0.18 0.035 

PCR.L 0.28 2.9E-10 0.44 2.7E-10 0.30 9.1E-05 0.18 0.044 0.21 0.042 0.21 0.040 0.25 0.003 

PCR.R 0.27 2.6E-09 0.27 8.2E-05 0.44 1.0E-08 0.20 0.020 0.14 0.179 0.23 0.020 0.25 0.003 

PLIC.L 0.12 0.010 0.27 1.2E-04 0.19 0.014 0.10 0.246 0.08 0.442 -0.20 0.045 0.04 0.625 

PLIC.R 0.15 7.2E-04 0.26 1.5E-04 0.27 3.0E-04 0.18 0.043 0.12 0.231 -0.16 0.121 0.05 0.544 

PTR.L 0.17 2.1E-04 0.26 1.7E-04 0.12 0.107 0.16 0.065 0.15 0.152 0.07 0.502 0.14 0.093 

PTR.R 0.17 1.8E-04 0.20 0.004 0.24 0.002 0.11 0.192 0.22 0.034 0.12 0.223 0.07 0.392 

RLIC.L 0.16 3.0E-04 0.37 7.1E-08 0.08 0.302 0.14 0.117 0.09 0.384 -0.03 0.790 0.13 0.105 

RLIC.R 0.13 0.004 0.21 0.002 0.22 0.004 0.08 0.349 0.07 0.492 -0.11 0.283 0.09 0.291 

SCR.L 0.27 1.5E-09 0.42 1.5E-09 0.32 3.1E-05 0.22 0.013 0.16 0.114 0.05 0.585 0.27 9.6E-04 
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SCR.R 0.23 3.7E-07 0.27 7.4E-05 0.34 6.1E-06 0.21 0.018 0.10 0.311 0.04 0.666 0.26 0.002 

SFO.L 0.11 0.013 0.22 0.002 0.16 0.036 -0.01 0.938 0.00 1.000 -0.04 0.676 0.15 0.073 

SFO.R 0.18 7.3E-05 0.24 4.5E-04 0.23 0.003 0.11 0.188 0.10 0.311 0.08 0.431 0.18 0.033 

SLF.L 0.29 9.8E-11 0.44 3.3E-10 0.29 1.5E-04 0.25 0.004 0.19 0.063 0.13 0.190 0.30 2.6E-04 

SLF.R 0.36 1.7E-15 0.40 1.1E-08 0.46 1.9E-09 0.35 7.1E-05 0.30 0.004 0.18 0.075 0.37 8.8E-06 

SS.L 0.31 4.4E-12 0.66 5.1E-21 0.27 3.5E-04 0.22 0.011 0.19 0.063 -0.03 0.791 0.23 0.007 

SS.R 0.32 1.5E-12 0.31 1.0E-05 0.67 3.1E-18 0.24 0.005 0.42 4.8E-05 0.02 0.830 0.16 0.060 

TAP.L 0.14 0.002 0.21 0.003 0.25 7.9E-04 0.02 0.823 0.05 0.652 0.09 0.381 0.08 0.338 

TAP.R 0.13 0.003 0.11 0.119 0.30 8.7E-05 0.04 0.666 0.05 0.597 0.11 0.293 0.10 0.235 

UNC.L 0.22 8.0E-07 0.47 1.1E-11 0.10 0.170 0.21 0.017 0.11 0.272 0.00 0.961 0.21 0.013 

UNC.R 0.29 1.3E-10 0.30 1.3E-05 0.62 8.8E-16 0.14 0.107 0.42 4.4E-05 0.04 0.713 0.12 0.130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 65 of 78

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

Supplementary Table 6. Effect sizes for RD differences between healthy controls and each syndrome. 
 

All Epilepsies L TLE-HS R TLE-HS L TLE-NL R TLE-NL GGE ExE 

ROI Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value 

AverageRD 0.47 1.2E-24 0.66 5.1E-21 0.70 7.3E-20 0.25 0.004 0.23 0.019 0.17 0.081 0.48 7.6E-09 

BCC 0.31 4.6E-12 0.44 2.1E-10 0.56 2.4E-13 0.05 0.545 0.09 0.333 0.04 0.664 0.39 3.5E-06 

GCC 0.21 2.1E-06 0.35 3.4E-07 0.39 2.5E-07 -0.09 0.280 0.09 0.368 0.04 0.713 0.29 4.4E-04 

SCC 0.10 0.024 0.13 0.064 0.26 5.4E-04 -0.07 0.395 -0.03 0.786 -0.14 0.163 0.23 0.005 

ACR.L 0.38 5.6E-17 0.57 1.9E-16 0.51 2.1E-11 0.14 0.104 0.13 0.200 0.26 0.009 0.42 3.6E-07 

ACR.R 0.45 2.9E-23 0.52 8.0E-14 0.69 2.5E-19 0.27 0.002 0.24 0.015 0.36 3.4E-04 0.46 3.3E-08 

ALIC.L 0.23 4.9E-07 0.39 1.6E-08 0.25 0.001 0.13 0.138 0.09 0.364 0.06 0.563 0.27 0.001 

ALIC.R 0.24 8.3E-08 0.24 3.7E-04 0.43 1.6E-08 0.14 0.116 0.18 0.072 0.12 0.223 0.26 0.002 

CGC.L 0.39 5.7E-18 0.69 1.1E-22 0.48 3.3E-10 0.19 0.031 0.21 0.029 0.09 0.361 0.37 8.5E-06 

CGC.R 0.33 1.2E-13 0.46 2.0E-11 0.57 9.2E-14 0.14 0.114 0.21 0.033 0.03 0.782 0.36 1.2E-05 

CGH.L 0.26 9.8E-09 0.67 7.4E-22 0.21 0.006 0.01 0.877 0.04 0.655 -0.02 0.869 0.24 0.003 

CGH.R 0.23 2.0E-07 0.24 5.7E-04 0.61 1.5E-15 -0.03 0.699 0.24 0.016 0.02 0.830 0.16 0.056 

CST.L 0.06 0.188 0.04 0.556 0.02 0.798 0.11 0.222 0.08 0.394 -0.07 0.496 0.14 0.086 

CST.R 0.05 0.232 0.08 0.221 0.06 0.409 0.04 0.687 0.02 0.831 -0.12 0.210 0.15 0.063 

EC.L 0.48 2.4E-26 0.83 6.5E-32 0.63 2.1E-16 0.33 1.8E-04 0.33 8.0E-04 0.12 0.208 0.38 3.9E-06 

EC.R 0.52 1.2E-30 0.61 2.5E-18 0.84 1.8E-27 0.40 4.1E-06 0.50 4.0E-07 0.21 0.032 0.43 2.2E-07 

FX.ST.L 0.24 1.1E-07 0.59 1.5E-17 0.12 0.113 0.11 0.227 0.13 0.168 -0.05 0.611 0.21 0.010 

FX.ST.R 0.26 1.3E-08 0.32 4.6E-06 0.52 7.0E-12 0.05 0.593 0.17 0.074 0.08 0.428 0.22 0.009 

PCR.L 0.31 3.8E-12 0.45 9.0E-11 0.31 3.7E-05 0.22 0.011 0.19 0.053 0.31 0.002 0.29 5.1E-04 

PCR.R 0.33 3.0E-13 0.36 1.7E-07 0.42 2.7E-08 0.26 0.003 0.17 0.083 0.39 1.1E-04 0.32 1.1E-04 

PLIC.L 0.18 7.7E-05 0.27 9.7E-05 0.19 0.011 0.17 0.057 0.12 0.220 -0.03 0.800 0.22 0.009 

PLIC.R 0.21 3.6E-06 0.25 2.8E-04 0.30 8.2E-05 0.24 0.005 0.15 0.133 -0.01 0.916 0.21 0.011 

PTR.L 0.24 1.2E-07 0.36 1.8E-07 0.19 0.014 0.18 0.036 0.10 0.292 0.19 0.052 0.26 0.002 

PTR.R 0.25 2.5E-08 0.28 5.8E-05 0.31 5.3E-05 0.17 0.047 0.16 0.104 0.29 0.003 0.21 0.010 

RLIC.L 0.28 9.3E-10 0.51 2.8E-13 0.21 0.006 0.19 0.028 0.15 0.135 0.18 0.066 0.23 0.006 

RLIC.R 0.24 1.6E-07 0.31 6.5E-06 0.33 1.8E-05 0.17 0.052 0.15 0.129 0.11 0.275 0.19 0.024 

SCR.L 0.32 7.2E-13 0.40 5.3E-09 0.38 6.0E-07 0.24 0.006 0.19 0.057 0.21 0.034 0.38 4.4E-06 
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SCR.R 0.31 5.6E-12 0.37 1.1E-07 0.40 1.8E-07 0.26 0.003 0.15 0.117 0.19 0.053 0.38 5.7E-06 

SFO.L 0.17 1.2E-04 0.25 2.4E-04 0.27 4.0E-04 0.03 0.696 -0.08 0.405 0.06 0.564 0.29 5.5E-04 

SFO.R 0.21 2.1E-06 0.30 1.4E-05 0.30 8.4E-05 0.12 0.171 -0.02 0.813 0.11 0.258 0.27 9.5E-04 

SLF.L 0.40 5.0E-19 0.56 5.1E-16 0.45 4.5E-09 0.30 0.001 0.20 0.042 0.32 0.001 0.43 2.6E-07 

SLF.R 0.48 4.7E-26 0.53 1.7E-14 0.62 4.1E-16 0.43 7.7E-07 0.30 0.002 0.37 1.9E-04 0.49 4.4E-09 

SS.L 0.41 1.4E-19 0.79 5.1E-29 0.39 3.5E-07 0.28 0.001 0.21 0.035 0.11 0.249 0.31 1.9E-04 

SS.R 0.43 3.7E-21 0.44 2.2E-10 0.76 6.8E-23 0.32 2.6E-04 0.44 9.1E-06 0.19 0.056 0.33 9.0E-05 

TAP.L 0.14 0.002 0.22 0.002 0.27 4.0E-04 -0.01 0.924 -0.08 0.398 0.09 0.380 0.13 0.118 

TAP.R 0.15 9.0E-04 0.14 0.043 0.27 3.7E-04 0.04 0.673 0.02 0.869 0.18 0.070 0.16 0.051 

UNC.L 0.29 1.2E-10 0.47 9.7E-12 0.27 3.4E-04 0.24 0.006 0.20 0.044 0.06 0.574 0.32 1.5E-04 

UNC.R 0.33 4.8E-13 0.33 1.1E-06 0.72 6.4E-21 0.09 0.282 0.35 4.0E-04 -0.01 0.934 0.28 6.3E-04 
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Supplementary Table 7. Effect sizes for AD differences between healthy controls and each syndrome. 
 

All Epilepsies L TLE-HS R TLE-HS L TLE-NL R TLE-NL GGE ExE 

ROI Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value Cohen's d P value 

AverageAD 0.01 0.816 0.17 0.013 0.16 0.034 -0.06 0.491 -0.13 0.216 -0.19 0.048 -0.16 0.047 

BCC 0.00 0.930 0.10 0.135 0.09 0.247 -0.04 0.615 -0.03 0.756 -0.20 0.038 -0.12 0.142 

GCC 0.06 0.157 0.18 0.007 0.17 0.023 -0.03 0.705 -0.02 0.834 -0.09 0.369 -0.05 0.567 

SCC 0.06 0.190 0.14 0.038 0.10 0.191 -0.08 0.372 -0.10 0.347 0.06 0.512 0.06 0.440 

ACR.L 0.16 4.4E-04 0.29 1.9E-05 0.24 0.001 0.09 0.275 0.03 0.754 0.04 0.699 0.03 0.686 

ACR.R 0.17 1.5E-04 0.22 0.001 0.35 2.0E-06 0.11 0.193 0.09 0.385 0.07 0.474 0.00 1.000 

ALIC.L -0.04 0.312 0.06 0.338 0.01 0.869 0.01 0.928 0.00 1.000 -0.29 0.003 -0.23 0.004 

ALIC.R -0.03 0.536 0.05 0.480 0.06 0.407 0.03 0.729 0.03 0.745 -0.23 0.022 -0.23 0.004 

CGC.L -0.17 1.7E-04 -0.15 0.023 -0.31 2.7E-05 0.03 0.718 -0.13 0.207 -0.22 0.025 -0.16 0.047 

CGC.R -0.11 0.013 -0.11 0.091 -0.18 0.013 0.02 0.853 -0.13 0.202 -0.21 0.031 -0.04 0.611 

CGH.L -0.01 0.884 0.13 0.065 -0.04 0.570 -0.05 0.555 -0.07 0.519 -0.14 0.142 -0.03 0.751 

CGH.R 0.01 0.862 0.09 0.187 -0.02 0.807 -0.01 0.943 0.06 0.530 -0.16 0.106 -0.03 0.703 

CST.L 0.04 0.340 0.09 0.196 0.03 0.636 0.11 0.214 0.06 0.526 -0.08 0.393 0.00 1.000 

CST.R 0.04 0.373 0.08 0.225 0.03 0.722 0.17 0.053 -0.04 0.685 -0.08 0.412 0.03 0.671 

EC.L 0.06 0.167 0.23 0.001 0.02 0.795 0.07 0.409 0.17 0.091 -0.17 0.091 -0.11 0.186 

EC.R 0.08 0.086 0.13 0.063 0.10 0.186 0.10 0.249 0.27 0.008 -0.14 0.139 -0.04 0.664 

FX.ST.L -0.03 0.543 0.10 0.162 -0.12 0.110 -0.08 0.331 0.05 0.630 -0.16 0.098 -0.03 0.689 

FX.ST.R 0.03 0.445 0.07 0.295 0.15 0.044 -0.07 0.399 -0.05 0.611 -0.12 0.203 0.05 0.505 

PCR.L 0.15 0.001 0.24 3.7E-04 0.21 0.005 0.10 0.262 0.08 0.406 0.02 0.870 0.14 0.090 

PCR.R 0.19 2.8E-05 0.15 0.023 0.41 4.9E-08 0.14 0.101 0.11 0.290 0.04 0.714 0.14 0.086 

PLIC.L -0.01 0.750 0.07 0.274 0.00 1.000 0.07 0.409 0.01 0.895 -0.29 0.004 -0.10 0.239 

PLIC.R 0.05 0.296 0.13 0.050 0.10 0.159 0.18 0.035 0.02 0.833 -0.27 0.006 -0.06 0.484 

PTR.L 0.03 0.470 0.12 0.085 0.04 0.626 -0.01 0.865 0.07 0.468 -0.12 0.219 0.00 1.000 

PTR.R 0.01 0.803 0.02 0.780 0.08 0.274 0.02 0.791 0.09 0.363 -0.13 0.190 -0.08 0.338 

RLIC.L 0.01 0.872 0.11 0.111 -0.01 0.853 0.03 0.744 -0.03 0.800 -0.21 0.035 0.01 0.918 

RLIC.R 0.08 0.057 0.11 0.104 0.18 0.015 0.12 0.159 0.00 1.000 -0.14 0.149 0.06 0.487 

SCR.L 0.11 0.012 0.28 3.2E-05 0.08 0.298 0.15 0.084 0.07 0.478 -0.09 0.335 0.03 0.742 
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SCR.R 0.14 0.002 0.17 0.013 0.29 1.2E-04 0.18 0.042 -0.03 0.780 0.02 0.861 0.09 0.274 

SFO.L 0.02 0.579 0.09 0.181 0.03 0.691 0.00 1.000 0.02 0.847 -0.08 0.442 -0.02 0.825 

SFO.R 0.05 0.257 0.10 0.128 0.06 0.451 0.05 0.539 0.15 0.155 -0.03 0.786 -0.07 0.398 

SLF.L 0.02 0.718 0.07 0.274 -0.04 0.550 0.09 0.290 -0.02 0.877 -0.13 0.198 0.05 0.535 

SLF.R 0.07 0.107 0.10 0.144 0.06 0.430 0.15 0.091 0.06 0.563 -0.08 0.428 0.10 0.223 

SS.L 0.09 0.039 0.34 6.6E-07 0.01 0.932 0.07 0.427 -0.03 0.765 -0.14 0.145 0.06 0.448 

SS.R 0.12 0.005 0.04 0.542 0.44 4.3E-09 0.09 0.283 0.22 0.035 -0.09 0.346 -0.01 0.885 

TAP.L 0.08 0.092 0.09 0.174 0.09 0.243 0.02 0.809 0.17 0.089 0.05 0.618 0.04 0.632 

TAP.R 0.06 0.195 0.00 1.000 0.16 0.031 0.04 0.630 0.08 0.429 0.02 0.860 0.02 0.800 

UNC.L 0.03 0.509 0.15 0.031 -0.09 0.250 0.08 0.372 0.02 0.813 0.01 0.916 -0.07 0.365 

UNC.R 0.13 0.003 0.18 0.007 0.15 0.037 0.19 0.025 0.21 0.038 0.08 0.408 -0.04 0.602 
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Supplementary Table 8. Relationship between FA and age of disease onset by syndrome. Partial 
correlations between FA in each ROI and age of disease onset controlling for age, age2 and sex. 

Results are split by syndrome: all syndromes (All), temporal lobe epilepsy with hippocampal sclerosis 

in the left and right hemisphere (TLE-HS-l and TLE-HS-r respectively), non-lesional temporal lobe 

epilepsy in the left and right hemisphere (TLE-NL-l and TLE-NL-r respectively), genetic generalized 
epilepsy (GGE) and extra temporal (ExE). ROIs are separated by left (.L) and right (.R) hemisphere 

where indicated. Significance was set at *** p =< 0.001 (controlling for multiple comparisons, one 

sided). * p < 0.05 ** p < 0.01 *** p =< 0.001. 

ROI All TLE-HS-l TLE-HS-r TLE-NL-l TLE-NL-r GGE ExE 

AverageFA .19*** .20*** .24*** .08 .14 .08 .02 

BCC .15*** .19*** .24*** .08 .00 -.05 .03 

GCC .16*** .20*** .19** .06 .09 -.06 .05 

SCC .13*** .11* .28*** .02 -.09 .00 .11 

ACR.L .13*** .18** .16** .03 .07 -.03 .02 

ACR.R .11*** .12* .07 .13 .15 -.02 .00 

ALIC.L .09** .08 .12* .02 .16 -.04 -.03 

ALIC.R .11*** .15** .10 .12 .11 .02 -.01 

CGC.L .16*** .17** .15* .17* .08 .01 .01 

CGC.R .16*** .17** .19** .14* .11 .09 -.01 

CGH.L .11*** .08 .22*** -.03 -.12 .11 .06 

CGH.R .12*** -.03 .27*** .09 .12 .11 -.01 

CST.L .06* .07 .07 .07 .04 .11 -.01 

CST.R .03 .03 -.01 .01 .09 .03 -.01 

EC.L .16*** .20*** .19** .08 .13 .08 -.05 

EC.R .17*** .17** .25*** .07 .15 .16* .00 

FX.ST.L .11*** .12* .13* .09 .02 .00 .01 

FX.ST.R .13*** .14** .19** .09 .06 .07 -.03 

PCR.L .09** .10* .15* .05 -.11 .07 .02 

PCR.R .13*** .11* .22*** .06 -.08 .05 .07 

PLIC.L .03 .03 .04 -.01 -.03 -.05 .06 

PLIC.R .05 .05 .06 -.01 -.07 .07 .05 

PTR.L .11*** .16** .13* .11 -.02 .03 .02 

PTR.R .10*** .12* .14* .11 -.04 .01 .00 

RLIC.L .10*** .14* .09 .05 -.02 .04 .08 

RLIC.R .07* .05 .10 .00 .03 .05 -.03 

SCR.L .07** .11* .08 -.02 .02 -.03 .07 

SCR.R .09*** .14* .08 -.01 -.03 .02 .10 

SFO.L .09** .12* .03 .138* .08 -.01 -.03 

SFO.R .11*** .15** .08 .08 .08 .08 .02 

SLF.L .13*** .13* .16** .155* -.01 .01 .05 

SLF.R .14*** .07 .23*** .16* .04 .11 .05 

SS.L .12*** .16** .15* .06 .00 .02 .08 

SS.R .12*** .12* .17** .13 -.01 .07 .02 

TAP.L .13*** .11* .18** .09 .07 -.06 .08 

TAP.R .13*** .09 .19** .02 .10 .00 .06 

UNC.L .08** .13* .09 -.07 .09 .11 -.06 

UNC.R .15*** .05 .27*** .05 .30*** .09 .00 
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Supplementary Table 9. Relationship between FA and disease duration by syndrome. Partial 
correlations between FA in each ROI and disease duration controlling for age, age2 and sex. Results 

are split by syndrome: all syndromes (All), temporal lobe epilepsy with hippocampal sclerosis in the 

left and right hemisphere (TLE-HS-l and TLE-HS-r respectively), non-lesional temporal lobe epilepsy 

in the left and right hemisphere (TLE-NL-l and TLE-NL-r respectively), genetic generalized epilepsy 
(GGE) and extra temporal (Extra). ROIs are separated by left (.L) and right (.R) hemisphere where 

indicated. Significance was set at *** p =< 0.001 (controlling for multiple comparisons, one sided). * 

p < 0.05 ** p < 0.01 *** p =< 0.001. 
 

ROI All TLE-HS-l TLE-HS-r TLE-NL-l TLE-NL-r GGE ExE 

AverageFA -.17*** -.17** -.21*** -.09 -.23* -.09 -.02 

BCC -.16*** -.21*** -.20** -.15* -.13 .04 -.03 

GCC -.13*** -.16** -.18** -.06 -.15 .02 -.05 

SCC -.10*** -.06 -.22*** -.01 .01 -.01 -.11 

ACR.L -.11*** -.14* -.13* -.06 -.16 .00 -.01 

ACR.R -.10*** -.09 -.05 -.15* -.25** -.01 .02 

ALIC.L -.08** -.08 -.09 -.04 -.23* .06 .04 

ALIC.R -.09** -.10 -.09 -.14* -.19* -.02 .06 

CGC.L -.17** -.20*** -.11 -.22** -.16 .01 -.02 

CGC.R -.17*** -.20*** -.14* -.19* -.21* -.06 .00 

CGH.L -.09** -.03 -.13* -.01 .05 -.10 -.03 

CGH.R -.10** .06 -.28*** -.07 -.08 -.09 .03 

CST.L -.05 -.02 -.12* -.05 -.13 -.11 .04 

CST.R -.01 -.03 .01 .04 -.12 -.04 .08 

EC.L -.16** -.22*** -.13* -.10 -.17 -.07 .05 

EC.R -.16** -.15** -.22*** -.10 -.19* -.17* -.01 

FX.ST.L -.09** -.11* -.02 -.12 -.05 -.01 -.03 

FX.ST.R -.13** -.15** -.12* -.11 -.09 -.07 -.01 

PCR.L -.06* -.04 -.11 .01 .03 -.07 -.02 

PCR.R -.10*** -.03 -.26*** .00 .01 -.09 -.07 

PLIC.L -.03 -.02 -.06 .01 -.06 .07 -.05 

PLIC.R -.04 -.02 -.06 -.03 .01 -.07 -.01 

PTR.L -.09** -.12* -.14* -.07 -.06 -.07 -.03 

PTR.R -.08** -.09 -.14* -.06 -.05 -.07 -.02 

RLIC.L -.08** -.13* -.04 -.10 -.05 -.04 -.04 

RLIC.R -.05* -.03 -.09 -.03 -.10 -.05 .07 

SCR.L -.06* -.09 -.09 .04 -.06 .03 -.02 

SCR.R -.09** -.10* -.15* .00 .02 -.03 -.06 

SFO.L -.06* -.10 .02 -.11 -.08 .02 .01 

SFO.R -.09** -.12* -.09 -.12 -.04 -.09 .02 

SLF.L -.13*** -.12* -.12* -.14 -.07 .00 -.07 

SLF.R -.12*** -.05 -.20** -.14* -.07 -.10 -.05 

SS.L -.12*** -.15** -.09 -.07 -.16 -.03 -.09 

SS.R -.11*** -.07 -.18** -.13 -.09 -.09 -.01 

TAP.L -.14*** -.08 -.26*** -.05 -.16 .05 -.10 

TAP.R -.13*** -.03 -.26*** -.02 -.12 -.03 -.08 

UNC.L -.07** -.15** -.02 .10 -.07 -.12 .03 

UNC.R -.14** -.05 -.24*** -.01 -.37*** -.09 -.05 
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Supplementary Table 10. Relationship between MD and age of disease onset by syndrome. 
Partial correlations between MD in each ROI and age of disease onset controlling for age, age2 and 

sex. Results are split by syndrome: all syndromes (All), temporal lobe epilepsy with hippocampal 

sclerosis in the left and right hemisphere (TLE-HS-l and TLE-HS-r respectively), non-lesional 

temporal lobe epilepsy in the left and right hemisphere (TLE-NL-l and TLE-NL-r respectively), 
genetic generalized epilepsy (GGE) and extra temporal (Extra). ROIs are separated by left (.L) and 

right (.R) hemisphere where indicated. Significance was set at *** p =< 0.001 (controlling for 

multiple comparisons, one sided). * p < 0.05 ** p < 0.01 *** p =< 0.001. 

ROI All TLE-HS-l TLE-HS-r TLE-NL-l TLE-NL-r GGE ExE 

AverageMD -.16*** -.11* -.27*** -.14* -.09 -.02 .00 

BCC -.13*** -.08 -.20** -.06 -.10 .03 -.02 

GCC -.10*** -.12* -.10 -.02 -.05 .06 -.03 

SCC -.11*** -.08 -.21*** -.02 -.08 -.10 .04 

ACR.L -.10*** -.14** -.11* .02 -.05 .03 -.05 

ACR.R -.10** -.05 -.11 -.03 -.06 .05 -.09 

ALIC.L -.07* -.08 -.04 -.04 .06 .04 -.08 

ALIC.R -.08** -.09 -.05 -.04 .14 .02 -.13 

CGC.L -.11*** -.11* -.07 -.10 -.04 -.10 -.06 

CGC.R -.10*** .00 -.11 -.15* -.04 -.10 -.12 

CGH.L -.08** -.10 -.15* -.02 .14 .03 -.05 

CGH.R -.10*** -.01 -.23*** -.05 .02 -.05 -.01 

CST.L -.03 -.05 -.13* -.01 .14 .04 .02 

CST.R -.01 .01 -.13* .08 .13 .02 .03 

EC.L -.09*** -.06 -.11 -.04 .01 -.06 -.03 

EC.R -.10*** -.08 -.14* -.01 .06 -.05 -.12 

FX.ST.L -.08** -.04 -.15* -.13 .00 .04 -.02 

FX.ST.R -.11*** .00 -.20*** -.12 -.01 .05 -.08 

PCR.L -.08** -.02 -.15* .03 -.06 -.05 -.02 

PCR.R -.09** -.04 -.17** .02 -.07 -.04 -.01 

PLIC.L -.03 .02 -.03 -.08 .05 .12 -.18* 

PLIC.R -.05 .01 -.06 -.09 .13 .03 -.12 

PTR.L -.08** -.05 -.19** .04 .02 .01 -.06 

PTR.R -.07* -.04 -.13* .05 -.03 .00 -.01 

RLIC.L -.10*** -.08 -.10 -.06 -.07 -.07 -.11 

RLIC.R -.09** .02 -.19** .00 -.06 -.02 -.09 

SCR.L -.065* -.05 -.13* .06 -.02 .07 -.08 

SCR.R -.064* -.05 -.08 .03 .09 .06 -.12 

SFO.L -.04 .00 -.06 -.02 .05 .15 -.07 

SFO.R -.06* .02 -.10 -.01 .00 .08 -.14* 

SLF.L -.07** -.06 -.11 .01 .07 -.04 -.05 

SLF.R -.07* -.05 -.10 -.04 .12 -.01 -.06 

SS.L -.10*** -.14** -.15* .05 .10 -.01 -.07 

SS.R -.10*** -.02 -.22*** .06 -.02 -.01 -.04 

TAP.L -.12*** -.15** -.22*** .02 -.10 -.03 .05 

TAP.R -.10*** -.05 -.16** -.16* -.17* -.01 .08 

UNC.L -.06* -.11* -.04 .06 .07 -.23** .06 

UNC.R -.09** .01 -.20*** .07 -.02 -.01 -.09 
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Supplementary Table 11. Relationship between MD and disease duration by syndrome. Partial 
correlations between MD in each ROI and disease duration controlling for age, age2 and sex. Results 

are split by syndrome: all syndromes (All), temporal lobe epilepsy with hippocampal sclerosis in the 

left and right hemisphere (TLE-HS-l and TLE-HS-r respectively), non-lesional temporal lobe epilepsy 

in the left and right hemisphere (TLE-NL-l and TLE-NL-r respectively), genetic generalized epilepsy 
(GGE) and extra temporal (Extra). ROIs are separated by left (.L) and right (.R) hemisphere where 

indicated. Significance was set at *** p =< 0.001 (controlling for multiple comparisons, one sided). * 

p < 0.05 ** p < 0.01 *** p =< 0.001. 

ROI All TLE-HS-l TLE-HS-r TLE-NL-l TLE-NL-r GGE ExE 

AverageMD .16*** .12* .26*** .14* .05 .00 .05 

BCC .13*** .09 .18** .11 .06 -.04 .04 

GCC .11*** .16** .12* -.04 .00 -.07 .07 

SCC .09** .05 .21*** .02 -.04 .09 -.02 

ACR.L .11*** .15** .17** -.07 .02 -.05 .06 

ACR.R .10*** .06 .16* -.03 .03 -.07 .09 

ALIC.L .03 .03 -.03 .02 -.13 -.06 .12 

ALIC.R .04 .05 -.01 -.01 -.18* -.04 .16* 

CGC.L .08** .06 .06 .03 .06 .08 .07 

CGC.R .09** -.01 .13* .09 .03 .08 .15* 

CGH.L .06* .03 .14* -.02 -.10 -.03 .06 

CGH.R .09** -.03 .26*** .04 .06 .05 .02 

CST.L .00 -.02 .14* .01 -.18* -.03 .01 

CST.R -.02 -.03 .10 -.10 -.21* -.01 .00 

EC.L .08** .07 .08 -.03 -.01 .03 .08 

EC.R .09** .03 .15* -.01 .00 .03 .17* 

FX.ST.L .05* .03 .12* .06 -.03 -.07 -.02 

FX.ST.R .10*** -.02 .18** .05 .12 -.07 .11 

PCR.L .08** .04 .16** -.06 -.03 .04 .04 

PCR.R .09** .03 .17** .03 -.04 .02 .02 

PLIC.L .00 -.06 -.03 .05 -.06 -.14 .19** 

PLIC.R .04 -.02 .01 .13 -.11 -.07 .14* 

PTR.L .09** .07 .21*** -.04 -.10 -.01 .07 

PTR.R .06* .04 .13* -.05 -.02 .00 -.01 

RLIC.L .09** .06 .12* .05 .07 .06 .14* 

RLIC.R .09** -.01 .17** -.01 .06 .01 .13 

SCR.L .06* .03 .13* -.07 .02 -.09 .08 

SCR.R .05* .03 .09 -.09 -.05 -.07 .12 

SFO.L .03 .03 .03 -.05 .00 -.16* .08 

SFO.R .070* .03 .11 -.04 .00 -.09 .13 

SLF.L .07** .03 .11 -.02 .03 .02 .09 

SLF.R .06* .02 .10 .02 -.07 -.01 .10 

SS.L .11*** .18** .139* -.10 -.03 .00 .11 

SS.R .11*** .03 .24*** -.12 .07 .01 .07 

TAP.L .13*** .14* .29*** -.04 -.05 .03 .02 

TAP.R .09** .05 .20** .09 -.02 .00 -.05 

UNC.L .05 .10 .03 -.12 -.05 .23** -.06 

UNC.R .08** .03 .12* -.12 .13 -.01 .12 

 
 

Page 73 of 78

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

Supplementary Table 12. Relationship between RD and age of disease onset by syndrome. 
Partial correlations between RD in each ROI and age of disease onset controlling for age, age2 and 

sex. Results are split by syndrome: all syndromes (All), temporal lobe epilepsy with hippocampal 

sclerosis in the left and right hemisphere (TLE-HS-l and TLE-HS-r respectively), non-lesional 

temporal lobe epilepsy in the left and right hemisphere (TLE-NL-l and TLE-NL-r respectively), 
genetic generalized epilepsy (GGE) and extra temporal (Extra). ROIs are separated by left (.L) and 

right (.R) hemisphere where indicated. Significance was set at *** p =< 0.001 (controlling for 

multiple comparisons, one sided). * p < 0.05 ** p < 0.01 *** p =< 0.001. 

ROI All TLE-HS-l TLE-HS-r TLE-NL-l TLE-NL-r GGE ExE 

AverageRD -.18*** -.15** -.25*** -.14* -.18* -.05 -.02 

BCC -.17*** -.12* -.24*** -.15* -.19* .03 -.03 

GCC -.13*** -.16*** -.14* -.05 -.11 .01 -.03 

SCC -.14*** -.08 -.27*** -.02 -.16 -.06 -.08 

ACR.L -.13*** -.17*** -.12* .00 -.14 .00 -.05 

ACR.R -.11*** -.07 -.09 -.06 -.16* .01 -.07 

ALIC.L -.09*** -.09 -.11* -.04 -.03 .07 -.06 

ALIC.R -.12*** -.08 -.10 -.11 -.08 -.03 -.11 

CGC.L -.14*** -.14** -.11* -.10 -.06 -.05 -.04 

CGC.R -.13*** -.04 -.14* -.14* -.11 -.12 -.05 

CGH.L -.13*** -.14** -.18** -.06 .09 -.03 -.07 

CGH.R -.12*** -.02 -.24*** -.13 -.05 -.09 .00 

CST.L -.05* -.12* -.10 -.04 .08 .01 -.01 

CST.R -.04 -.05 -.08 -.04 .06 .03 -.02 

EC.L -.14*** -.14** -.15* -.08 -.08 -.09 -.01 

EC.R -.14*** -.12* -.20** -.06 -.06 -.10 -.08 

FX.ST.L -.12*** -.10* -.11* -.21** -.01 .01 -.02 

FX.ST.R -.13*** -.07 -.18** -.17* -.08 -.05 -.03 

PCR.L -.10 -.02 -.16** -.03 -.08 -.10 -.03 

PCR.R -.11*** -.08 -.19** .02 -.07 -.07 -.05 

PLIC.L -.05 .03 -.09 -.06 -.02 .07 -.13 

PLIC.R -.08** -.01 -.10 -.11 .01 -.04 -.07 

PTR.L -.12*** -.10* -.20** -.03 -.11 -.05 -.06 

PTR.R -.11*** -.10 -.15* .03 -.14 -.03 -.02 

RLIC.L -.13*** -.10* -.14* -.10 -.12 -.08 -.14* 

RLIC.R -.11*** -.02 -.17** -.04 -.09 -.04 -.06 

SCR.L -.07* -.06 -.10 .05 -.09 .06 -.10 

SCR.R -.08** -.07 -.07 .03 .05 .01 -.15* 

SFO.L -.09** -.07 -.11 .00 -.07 .12 -.04 

SFO.R -.11*** -.04 -.15* -.07 .02 .01 -.10 

SLF.L -.11*** -.08 -.15* -.03 .05 -.05 -.05 

SLF.R -.10*** -.03 -.14* -.04 .02 -.08 -.07 

SS.L -.14*** -.17** -.17** -.01 -.05 -.05 -.10 

SS.R -.12*** -.08 -.21*** .05 -.16 -.06 -.02 

TAP.L -.14*** -.11* -.24*** .03 -.16* -.03 -.01 

TAP.R -.13*** -.07 -.19** -.14* -.21* -.04 .03 

UNC.L -.07* -.09 -.05 .04 .03 -.23** .07 

UNC.R -.12*** -.05 -.21*** .02 -.15 -.02 -.05 
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Supplementary Table 13. Relationship between RD and disease duration by syndrome. Partial 
correlations between RD in each ROI and disease duration controlling for age, age2 and sex. Results 

are split by syndrome: all syndromes (All), temporal lobe epilepsy with hippocampal sclerosis in the 

left and right hemisphere (TLE-HS-l and TLE-HS-r respectively), non-lesional temporal lobe epilepsy 

in the left and right hemisphere (TLE-NL-l and TLE-NL-r respectively), genetic generalized epilepsy 
(GGE) and extra temporal (Extra). ROIs are separated by left (.L) and right (.R) hemisphere where 

indicated. Significance was set at *** p =< 0.001 (controlling for multiple comparisons, one sided). * 

p < 0.05 ** p < 0.01 *** p =< 0.001. 

ROI All TLE-HS-l TLE-HS-r TLE-NL-l TLE-NL-r GGE ExE 

AverageRD .19*** .17** .27*** .15* .16 .04 .05 

BCC .18*** .14* .24*** .21** .15 -.04 .04 

GCC .15*** .21** .18** .00 .08 -.02 .04 

SCC .15*** .09 .29*** .04 .05 .05 .11 

ACR.L .14*** .19** .18** -.03 .11 -.01 .06 

ACR.R .11*** .09 .13* .01 .16 -.03 .06 

ALIC.L .07* .07 .05 -.01 .06 -.09 .09 

ALIC.R .09** .08 .08 .04 .07 .01 .11 

CGC.L .14*** .15** .12* .04 .10 .03 .06 

CGC.R .14*** .04 .18** .10 .11 .10 .07 

CGH.L .11*** .08 .18** .02 -.06 .03 .08 

CGH.R .12*** -.02 .28*** .10 .13 .09 .02 

CST.L .03 .09 .13* .00 -.14 -.01 .01 

CST.R .01 .04 .08 .00 -.16 -.02 .01 

EC.L .14*** .14* .15* .04 .11 .07 .04 

EC.R .14*** .09 .21*** .04 .10 .09 .12 

FX.ST.L .10*** .10 .11 .15* .01 -.01 .02 

FX.ST.R .14*** .07 .17** .12 .15 .03 .07 

PCR.L .10** .03 .20** -.02 -.01 .09 .05 

PCR.R .11*** .07 .21*** -.01 -.03 .05 .06 

PLIC.L .02 -.04 .07 -.05 -.01 -.08 .15* 

PLIC.R .06* .01 .09 .09 -.06 .02 .06 

PTR.L .13*** .12* .24*** .02 .02 .05 .07 

PTR.R .11*** .11* .18** -.06 .12 .03 .01 

RLIC.L .10*** .06 .16* .02 .05 .07 .13 

RLIC.R .11*** .04 .17** .02 .08 .03 .06 

SCR.L .07* .06 .13* -.08 .08 -.08 .07 

SCR.R .08** .07 .08 -.08 -.03 -.02 .13 

SFO.L .07* .05 .07 -.03 .06 -.13 .05 

SFO.R .10*** .06 .11 .06 .04 -.02 .07 

SLF.L .12*** .08 .17** .04 .05 .04 .09 

SLF.R .10*** .00 .16* .04 .03 .07 .09 

SS.L .15*** .19*** .17** -.03 .13 .05 .12 

SS.R .14*** .12* .22*** -.06 .22* .05 .04 

TAP.L .14*** .12* .32*** -.11 .03 .04 .08 

TAP.R .13*** .07 .25*** .07 .08 .04 .01 

UNC.L .07* .12* .05 -.11 -.02 .24** -.06 

UNC.R .11*** .00 .20** -.06 .25** .01 .09 
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Supplementary Table 14. Relationship between AD and age of disease onset by syndrome. 
Partial correlations between AD in each ROI and age of disease onset controlling for age, age2 and 

sex. Results are split by syndrome: all syndromes (All), temporal lobe epilepsy with hippocampal 

sclerosis in the left and right hemisphere (TLE-HS-l and TLE-HS-r respectively), non-lesional 

temporal lobe epilepsy in the left and right hemisphere (TLE-NL-l and TLE-NL-r respectively), 
genetic generalized epilepsy (GGE) and extra temporal (Extra). ROIs are separated by left (.L) and 

right (.R) hemisphere where indicated. Significance was set at *** p =< 0.001 (controlling for 

multiple comparisons, one sided). * p < 0.05 ** p < 0.01 *** p =< 0.001. 

ROI All TLE-HS-l TLE-HS-r TLE-NL-l TLE-NL-r GGE ExE 

AverageAD -.05* -.03 -.16** -.01 .09 .05 .03 

BCC -.01 .01 .00 -.03 -.02 .01 .02 

GCC -.02 -.05 .04 -.03 .06 .08 .00 

SCC -.06* -.08 -.11 .02 -.07 -.08 .17* 

ACR.L -.02 -.04 -.01 .04 .10 .06 -.02 

ACR.R -.04 -.02 -.08 .04 .11 .09 -.10 

ALIC.L -.02 -.04 .01 .00 .11 -.04 -.07 

ALIC.R -.01 -.04 .04 .05 .22* .01 -.13 

CGC.L .05 .03 .02 .04 .16 -.10 -.01 

CGC.R .05 .12* .03 .00 .16 -.04 -.10 

CGH.L .00 -.02 -.04 .04 .14 .09 .00 

CGH.R -.02 -.01 -.13* .03 .19* .02 -.02 

CST.L .02 .03 -.10 .05 .15 .02 .04 

CST.R .04 .11* -.09 .12 .17* -.01 .07 

EC.L .01 .01 .02 .02 .19* .02 -.05 

EC.R .03 .05 .06 .03 .26** .05 -.14* 

FX.ST.L -.03 .00 -.09 -.10 .05 .05 -.01 

FX.ST.R -.02 .13* -.12* -.02 .04 .12 -.12 

PCR.L -.04 -.04 -.05 .04 -.12 .02 .02 

PCR.R -.02 .01 -.04 -.04 -.06 .01 .06 

PLIC.L .00 -.03 .05 -.08 .05 .14 -.09 

PLIC.R -.01 .00 .02 -.07 .02 .10 -.04 

PTR.L .00 .01 -.12* .13 .12 .09 -.02 

PTR.R .02 .05 -.05 .08 .08 .05 .02 

RLIC.L -.03 -.04 -.01 -.06 -.02 -.01 .00 

RLIC.R -.04 .06 -.11* -.09 .02 .02 -.11 

SCR.L -.01 -.03 -.03 .02 .09 .10 -.01 

SCR.R -.02 .01 -.04 -.04 .07 .13 -.03 

SFO.L .01 .03 -.01 .01 .09 .14 -.08 

SFO.R .01 .05 -.02 .04 .17* .13 -.12 

SLF.L .02 -.01 .03 .06 .16 .00 -.02 

SLF.R .06* .00 .09 .03 .24** .13 -.02 

SS.L -.03 -.10* -.05 .10 .15 .04 .00 

SS.R -.05 .02 -.17** -.01 .08 .07 -.06 

TAP.L -.04 -.08 -.15* .02 .02 -.04 .16* 

TAP.R -.01 .01 -.05 -.11 -.06 .01 .14* 

UNC.L .00 -.06 .04 .08 .11 -.09 .00 

UNC.R .00 .00 -.05 .12 .21* .09 -.07 
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Supplementary Table 15. Relationship between AD and disease duration by syndrome. Partial 
correlations between AD in each ROI and disease duration controlling for age, age2 and sex. Results 

are split by syndrome: all syndromes (All), temporal lobe epilepsy with hippocampal sclerosis in the 

left and right hemisphere (TLE-HS-l and TLE-HS-r respectively), non-lesional temporal lobe epilepsy 

in the left and right hemisphere (TLE-NL-l and TLE-NL-r respectively), genetic generalized epilepsy 
(GGE) and extra temporal (Extra). ROIs are separated by left (.L) and right (.R) hemisphere where 

indicated. Significance was set at *** p =< 0.001 (controlling for multiple comparisons, one sided). * 

p < 0.05 ** p < 0.01 *** p =< 0.001. 
ROI All TLE-HS-l TLE-HS-r TLE-NL-l TLE-NL-r GGE ExE 

AverageAD .03 -.02 .12* -.04 -.13 -.06 .02 

BCC -.01 -.04 -.04 -.01 -.06 -.01 .01 

GCC .02 .06 -.03 -.06 -.16 -.09 .06 

SCC .05 .03 .09 -.03 .00 .08 -.08 

ACR.L .03 .04 .06 -.08 -.08 -.07 .03 

ACR.R .04 .02 .11 -.09 -.16 -.10 .12 

ALIC.L -.01 .01 -.10 -.01 -.12 .03 .11 

ALIC.R -.02 .02 -.13* -.08 -.22* -.03 .19* 

CGC.L -.06* -.07 -.05 -.04 -.07 .09 .02 

CGC.R -.04 -.10 -.03 .01 -.14 .03 .14* 

CGH.L -.03 -.05 .02 -.06 -.10 -.10 .01 

CGH.R .00 -.04 .11 -.04 -.10 -.03 .02 

CST.L -.02 -.08 .14* -.04 -.19* -.01 .00 

CST.R -.04 -.09 .07 -.13 -.22* .01 .02 

EC.L -.01 -.02 -.05 -.01 -.14 -.04 .10 

EC.R -.03 -.08 -.07 -.04 -.18* -.07 .19** 

FX.ST.L .01 -.04 .09 .08 -.07 -.07 -.04 

FX.ST.R .01 -.13* .10 -.02 .01 -.14 .09 

PCR.L .05 .05 .10 -.06 -.04 -.03 .00 

PCR.R .03 .00 .06 .08 -.02 -.03 -.05 

PLIC.L .00 .01 -.09 .13 -.04 -.14 .10 

PLIC.R .01 .02 -.07 .08 -.01 -.12 .07 

PTR.L .00 -.02 .09 -.11 -.20* -.08 .04 

PTR.R -.03 -.06 .04 -.08 -.16 -.05 -.04 

RLIC.L .04 .01 .02 .09 .04 .02 .05 

RLIC.R .04 -.08 .10 .11 -.03 -.02 .16* 

SCR.L .00 -.01 .01 .02 -.11 -.10 .04 

SCR.R .01 -.01 .02 .02 -.03 -.14 .06 

SFO.L -.04 -.07 -.05 -.07 -.01 -.14 .08 

SFO.R -.03 -.04 -.05 -.12 -.12 -.13 .16* 

SLF.L -.02 -.01 -.02 -.05 -.06 -.01 .04 

SLF.R -.06* -.03 -.08 -.05 -.17 -.15 .06 

SS.L .03 .08 .04 -.09 -.08 -.05 .05 

SS.R .04 -.02 .14* -.09 -.06 -.08 .11 

TAP.L .05 .09 .19** -.05 -.11 .04 -.11 

TAP.R -.02 -.03 .05 .05 -.16 -.02 -.14* 

UNC.L -.01 .03 -.06 -.12 -.05 .08 -.01 

UNC.R -.02 -.06 .02 -.08 -.13 -.10 .06 
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Supplementary Table 16. Follow-up premutation testing of FA differences between controls and 

epilepsy patients. To check that heteroscedasticity was not influencing results, FSL PALM was used 

to test if permutation testing of the difference in FA between patients and controls was similar to the 

core ANCOVA results (Fig. 3, Supplementary Table 4). The simulated significance P(sim) threshold 

was set at p < 0.001.  

ROI v P(sim) 

AverageFA 12.0497 0.0001 

BCC 12.2958 0.0001 

GCC 10.1637 0.0001 

SCC 5.7422 0.0001 

ACR-L 9.3719 0.0001 

ACR-R 9.6532 0.0001 

ALIC-L 8.1954 0.0001 

ALIC-R 6.9274 0.0001 

CGC-L 10.9109 0.0001 

CGC-R 9.9744 0.0001 

CGH-L 9.9126 0.0001 

CGH-R 9.3407 0.0001 

CST-L 3.4363 0.0252 

CST-R 3.3421 0.0401 

EC-L 12.3362 0.0001 

EC-R 12.4861 0.0001 

FX/ST-L 8.5085 0.0001 

FX/ST-R 9.0563 0.0001 

PCR-L 7.4915 0.0001 

PCR-R 8.3506 0.0001 

PLIC-L 4.1092 0.0002 

PLIC-R 5.4984 0.0001 

PTR-L 7.8169 0.0001 

PTR-R 7.4353 0.0001 

RLIC-L 7.2476 0.0001 

RLIC-R 7.0187 0.0001 

SCR-L 6.378 0.0001 

SCR-R 6.3812 0.0001 

SFO-L 6.0982 0.0001 

SFO-R 5.0347 0.0001 

SLF-L 9.0426 0.0001 

SLF-R 9.9794 0.0001 

SS-L 11.1949 0.0001 

SS-R 11.264 0.0001 

TAP-L 8.3146 0.0001 

TAP-R 7.2814 0.0001 

UNC-L 6.8515 0.0001 

UNC-R 10.1114 0.0001 
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1

STROBE statement:  Reporting guidelines checklist for cohort, case-control and cross-sectional studies

SECTION ITEM 
NUMBER

CHECKLIST ITEM REPORTED ON 
PAGE NUMBER:

TITLE AND ABSTRACT
1a Indicate the study’s design with a commonly used term in the title or the abstract 6
1b Provide in the abstract an informative and balanced summary of what was done and what 

was found
6

INTRODUCTION
Background and objectives 2 Explain the scientific background and rationale for the investigation being reported 8

3 State specific objectives, including any pre-specified hypotheses 10
METHODS
Study design 4 Present key elements of study design early in the paper 9
Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, 

exposure, follow-up, and data collection
11

Participants 6a Cohort study—Give the eligibility criteria, and the sources and methods of selection of 
participants. Describe methods of follow-up
Case-control study—Give the eligibility criteria, and the sources and methods of case 
ascertainment and control selection. Give the rationale for the choice of cases and controls
Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection 
of participants

11

6b Cohort study—For matched studies, give matching criteria and number of exposed and 
unexposed
Case-control study—For matched studies, give matching criteria and the number of controls 
per case
Variables

11

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect 
modifiers. Give diagnostic criteria, if applicable

13

Data sources/measurements 8* For each variable of interest, give sources of data and details of methods of assessment 11
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(measurement). Describe comparability of assessment methods if there is more than one 
group.

Bias 9 Describe any efforts to address potential sources of bias. 12
Study size 10 Explain how the study size was arrived at 11
Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which 

groupings were chosen and why.
13

Statistical methods 12a Describe all statistical methods, including those used to control for confounding 13
12b Describe any methods used to examine subgroups and interactions 13
12c Explain how missing data were addressed 13
12d Cohort study—If applicable, explain how loss to follow-up was addressed

Case-control study—If applicable, explain how matching of cases and controls was addressed
Cross-sectional study—If applicable, describe analytical methods taking account of sampling 
strategy

13

12e Describe any sensitivity analyses 13,23
RESULTS
Participants 13a Report numbers of individuals at each stage of study—eg numbers potentially eligible, 

examined for eligibility, confirmed eligible, included in the study, completing follow-up, and 
analysed

15, Table 2

13b Give reasons for non-participation at each stage na
13c Consider use of a flow diagram na

Descriptive Data 14a Give characteristics of study participants (eg demographic, clinical, social) and information on 
exposures and potential confounders

15, Table 2

14b Indicate number of participants with missing data for each variable of interest na
14c Cohort study—Summarise follow-up time (eg, average and total amount) na

Outcome Data 15* Cohort study—Report numbers of outcome events or summary measures over time
Case-control study—Report numbers in each exposure category, or summary measures of 
exposure
Cross-sectional study—Report numbers of outcome events or summary measures

15, 
supplementary 
material
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Main Results 16a Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their 
precision (e.g. 95% confidence interval). Make clear which confounders were adjusted for 
and why they were included

Supplementary 
material, 16

16b Report category boundaries when continuous variables were categorized na
16c If relevant, consider translating estimates of relative risk into absolute risk for a meaningful 

time period
na

16d Report results of any adjustments for multiple comparisons 23
Other Analyses 17a Report other analyses done—e.g. analyses of subgroups and interactions, and sensitivity 

analyses
17

17b If numerous genetic exposures (genetic variants) were examined, summarize results from all 
analyses undertaken

na

17c If detailed results are available elsewhere, state how they can be accessed Supplementary 
material

DISCUSSION
Key Results 18 Summarise key results with reference to study objectives 24, 28
Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. 

Discuss both direction and magnitude of any potential bias
28

Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, 
multiplicity of analyses, results from similar studies, and other relevant evidence

24

Generalisability 21 Discuss the generalisability (external validity) of the study results
Other information

28

FUNDING
22 Give the source of funding and the role of the funders for the present study and, if applicable, 

for the original study on which the present article is based
30

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-
sectional studies.
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