277 research outputs found

    Revisiting the Response Mechanism of Polymeric Membrane Based Heparin Electrodes

    Full text link
    Potentiometric membrane electrodes that respond to heparin and other polyanions were introduced in the early 1990s. Herein, the mechanism of polymer membrane electrode type heparin sensors is revisited. The extraction/diffusion of heparin is studied via both potentiometric and impedance spectroscopic techniques using a prefractionated heparin preparation that contains polyanionic species >10 000 Daltons. The reversal in EMF response using this heparin preparation indicates diffusion of higher MW heparin fragments to the backside of the membrane. Diffusion coefficients are calculated using a novel formula derived from the phase boundary potential model and Fick′s second law of diffusion. Impedance spectroscopy is also employed to show that high MW heparin species are extracted and diffuse across the PVC membranes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90404/1/53_ftp.pd

    REMOVAL OF DIQUATERNARY AMMONIUM CATIONS FROM AS-SYNTHESIZED SSZ-16 ZEOLITE

    Get PDF
    Zeolites are stable microporous aluminosilicates with numerous applications in chemical technology such as separation of species and catalytic transformations. Our study is focused on a weakly explored zeolite SSZ-16 with pore constrictions defined by 8-membered oxygen rings. Key results are the preparation of Et6-diquat-5 dication used as a structure directing agent (SDA) and finding the optimum synthesis conditions with respect to zeolite phase purity. Stability of SDA was examined in conditions similar to those of autoclave synthesis (concentration, pH, temperature). Moreover, the content and location of SDA species in zeolite phase and conditions of SDA decomposition were investigated

    Electrochemical evidence of catalysis of oxygen reduction at the polarized liquid–liquid interface by tetraphenylporphyrin monoacid and diacid

    Get PDF
    Cyclic voltammetry is used to study the role of 5,10,15,20-tetraphenyl-21H,23H-porphine (H2TPP) in the reduction of molecular oxygen by decamethylferrocene (DMFc) at the polarized water|1,2-dichloroethane (DCE) interface. It is shown that this rather slow reaction proceeds remarkably faster in the presence of tetraphenylporphyrin monoacid (H3TPP+) and diacid (H4TPP2+), which are formed in DCE by the successive transfer of two protons from the acidified aqueous phase. A mechanism is proposed, which includes the formation of adduct between H3TPP+ or H4TPP2+ and O2 that is followed by electron transfer from DMFc to the adduct leading to the observed production of DMFc+ and to the regeneration of H2TPP or H3TPP+, respectively

    DISTRIBUTION OF CRAYFISH IN SALZBURG, AUSTRIA

    Full text link

    Pulsed chronopotentiometric membrane electrodes based on plasticized poly(vinyl chloride) with covalently bound ferrocene functionalities as solid contact transducer

    Full text link
    Ion-selective membrane materials based on poly(vinyl chloride) (PVC)-containing covalently attached redox-active ferrocene (Fc) groups are characterized here as all-solid-state pulsed voltammetric ion sensors. The redox capacity of the membrane increases 7-fold with a doubling of the Fc content and 3-fold with the addition of 10 wt % of the lipophilic electrolyte ETH 500, tetradodecylammonium tetrakis(4-chlorophenyl) borate. This salt improves the ionic conductivity of the membrane and appears to make the Fc groups electrochemically more accessible. A too high content of the two, on the other hand, was found to cause undesired sensitivity to redox-active species present in the sample solution. Dilution of the membrane with a plasticizer eliminated this redox sensitivity while preserving its high redox capacity. A practical application of the designed electrodes in electrochemical analysis was demonstrated with a multi-pulse protocol that includes a current-controlled ion uptake pulse, followed by an open-circuit potential (OCP) measurement and a regeneration pulse. Potentiometric calibration curves obtained with this protocol exhibited a linear response with near-Nernstian slopes for acetate, nitrate, chloride, and perchlorate ions with the selectivity expected for an ion-exchanging membrane

    Fine tuning of the catalytic effect of a metal-free porphyrin on the homogeneous oxygen reduction

    Get PDF
    The catalytic effect of tetraphenylporphyrin on the oxygen reduction with ferrocene in 1,2-dichloroethane can be finely tuned by varying the molar ratio of the acid to the catalyst present in the solution. The mechanism involves binding of molecular oxygen to the protonated free porphyrin base, in competition with ion pairing between the protonated base and the acid anion present

    Recent advances in the use of ionic liquids for electrochemical sensing

    Get PDF
    Ionic Liquids are salts that are liquid at (or just above) room temperature. They possess several advantageous properties (e.g. high intrinsic conductivity, wide electrochemical windows, low volatility, high thermal stability and good solvating ability), which make them ideal as non-volatile electrolytes in electrochemical sensors. This mini-review article describes the recent uses of ionic liquids in electrochemical sensing applications (covering the last 3 years) in the context of voltammetric sensing at solid/liquid, liquid/liquid interfaces and carbon paste electrodes, as well as their use in gas sensing, ion-selective electrodes, and for detecting biological molecules, explosives and chemical warfare agents. A comment on the future direction and challenges in this field is also presented

    Electrochemical Characterisation of Nanoscale Liquid | Liquid Interfaces Located at Focused Ion Beam-Milled Silicon Nitride Membranes

    Get PDF
    The electrochemical behaviour of single and arrayed nanoscale interfaces between two immiscible electrolyte solutions (single and array nanoITIES) is presented. The interfaces were formed at nanopores fabricated through the focused ion beam (FIB) milling of silicon nitride (SiN) membranes by using nanopores with approximately 30–80 nm radii and with pore-to-pore separations to pore radius ratios in the range of 16–32. Electrochemistry was performed through the interfacial transfer of tetrapropylammonium (TPrA+) across single and array nanoITIES between water and 1,6-dichlorohexane. The ion-transfer limiting current at the single nanoITIES was in excellent agreement with the current predicted by using an inlaid disc interface model. At nanoITIES arrays, experimental currents were lower than predicted for an array of inlaid interfaces, which is attributed to overlapped diffusion zones. As a result, FIB milling offers an attractive strategy to form nanoITIES for diverse investigations
    corecore