371 research outputs found

    Academic Performance and Behavioral Patterns

    Get PDF
    Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students

    Social modulation of contagious yawning in wolves

    Get PDF
    On the basis of observational and experimental evidence, several authors have proposed that contagious yawn is linked to our capacity for empathy, thus presenting a powerful tool to explore the root of empathy in animal evolution. The evidence for the occurrence of contagious yawning and its link to empathy, however, is meagre outside primates and only recently domestic dogs have demonstrated this ability when exposed to human yawns. Since dogs are unusually skilful at reading human communicative behaviors, it is unclear whether this phenomenon is deeply rooted in the evolutionary history of mammals or evolved de novo in dogs as a result of domestication. Here we show that wolves are capable of yawn contagion, suggesting that such ability is a common ancestral trait shared by other mammalian taxa. Furthermore, the strength of the social bond between the model and the subject positively affected the frequency of contagious yawning, suggesting that in wolves the susceptibility of yawn contagion correlates with the level of emotional proximity. Moreover, female wolves showed a shorter reaction time than males when observing yawns of close associates, suggesting that females are more responsive to their social stimuli. These results are consistent with the claim that the mechanism underlying contagious yawning relates to the capacity for empathy and suggests that basic building blocks of empathy might be present in a wide range of species

    Anticancer potential of Thevetia peruviana fruit methanolic extract

    Get PDF
    Abstract Background: Thevetia peruviana (Pers.) K. Schum or Cascabela peruviana (L.) Lippold (commonly known as ayoyote, codo de fraile, lucky nut, or yellow oleander), native to Mexico and Central America, is a medicinal plant used traditionally to cure diseases like ulcers, scabies, hemorrhoids and dissolve tumors. The purpose of this study was to evaluate the cytotoxic, antiproliferative and apoptotic activity of methanolic extract of T. peruviana fruits on human cancer cell lines. Methods: The cytotoxic activity of T. peruviana methanolic extract was carried out on human breast, colorectal, prostate and lung cancer cell lines and non-tumorigenic control cells (fibroblast and Vero), using the MTT assay. For proliferation and motility, clonogenic and wound-healing assays were performed. Morphological alterations were monitored by trypan blue exclusion, as well as DNA fragmentation and AO/EB double staining was performed to evaluate apoptosis. The extract was separated using flash chromatography, and the resulting fractions were evaluated on colorectal cancer cells for their cytotoxic activity. The active fractions were further analyzed through mass spectrometry. Results: The T. peruviana methanolic extract exhibited cytotoxic activity on four human cancer cell lines: prostate, breast, colorectal and lung, with values of IC50 1.91 ± 0.76, 5.78 ± 2.12, 6.30 ± 4.45 and 12.04 ± 3.43 μg/mL, respectively. The extract caused a significant reduction of cell motility and colony formation on all evaluated cancer cell lines. In addition, morphological examination displayed cell size reduction, membrane blebbing and detachment of cells, compared to non-treated cancer cell lines. The T. peruviana extract induced apoptotic cell death, which was confirmed by DNA fragmentation and AO/EB double staining. Fractions 4 and 5 showed the most effective cytotoxic activity and their MS analysis revealed the presence of the secondary metabolites: thevetiaflavone and cardiac glycosides. Conclusion: T. peruviana extract has potential as natural anti-cancer product with critical effects in the proliferation, motility, and adhesion of human breast and colorectal cancer cells, and apoptosis induction in human prostate and lung cancer cell lines, with minimal effects on non-tumorigenic cell lines. Keywords: Cytotoxic activity, Anti-proliferative activity, Motility, Apoptosis, Human cancer cells, Flavonoid, Cardiac glycoside

    Signal One and Two Blockade Are Both Critical for Non-Myeloablative Murine HSCT across a Major Histocompatibility Complex Barrier

    Get PDF
    Non-myeloablative allogeneic haematopoietic stem cell transplantation (HSCT) is rarely achievable clinically, except where donor cells have selective advantages. Murine non-myeloablative conditioning regimens have limited clinical success, partly through use of clinically unachievable cell doses or strain combinations permitting allograft acceptance using immunosuppression alone. We found that reducing busulfan conditioning in murine syngeneic HSCT, increases bone marrow (BM):blood SDF-1 ratio and total donor cells homing to BM, but reduces the proportion of donor cells engrafting. Despite this, syngeneic engraftment is achievable with non-myeloablative busulfan (25 mg/kg) and higher cell doses induce increased chimerism. Therefore we investigated regimens promoting initial donor cell engraftment in the major histocompatibility complex barrier mismatched CBA to C57BL/6 allo-transplant model. This requires full myeloablation and immunosuppression with non-depleting anti-CD4/CD8 blocking antibodies to achieve engraftment of low cell doses, and rejects with reduced intensity conditioning (≤75 mg/kg busulfan). We compared increased antibody treatment, G-CSF, niche disruption and high cell dose, using reduced intensity busulfan and CD4/8 blockade in this model. Most treatments increased initial donor engraftment, but only addition of co-stimulatory blockade permitted long-term engraftment with reduced intensity or non-myeloablative conditioning, suggesting that signal 1 and 2 T-cell blockade is more important than early BM niche engraftment for transplant success

    Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay, and bugey-3 experiments

    Get PDF
    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin^2 2θμe are set over 6 orders of magnitude in the sterile mass-squared splitting Δm^2 41. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm^2 41 < 0.8 eV^2 at 95% CLs

    ANCA-associated vasculitis.

    Get PDF
    The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are a group of disorders involving severe, systemic, small-vessel vasculitis and are characterized by the development of autoantibodies to the neutrophil proteins leukocyte proteinase 3 (PR3-ANCA) or myeloperoxidase (MPO-ANCA). The three AAV subgroups, namely granulomatosis with polyangiitis (GPA), microscopic polyangiitis and eosinophilic GPA (EGPA), are defined according to clinical features. However, genetic and other clinical findings suggest that these clinical syndromes may be better classified as PR3-positive AAV (PR3-AAV), MPO-positive AAV (MPO-AAV) and, for EGPA, by the presence or absence of ANCA (ANCA+ or ANCA-, respectively). Although any tissue can be involved in AAV, the upper and lower respiratory tract and kidneys are most commonly and severely affected. AAVs have a complex and unique pathogenesis, with evidence for a loss of tolerance to neutrophil proteins, which leads to ANCA-mediated neutrophil activation, recruitment and injury, with effector T cells also involved. Without therapy, prognosis is poor but treatments, typically immunosuppressants, have improved survival, albeit with considerable morbidity from glucocorticoids and other immunosuppressive medications. Current challenges include improving the measures of disease activity and risk of relapse, uncertainty about optimal therapy duration and a need for targeted therapies with fewer adverse effects. Meeting these challenges requires a more detailed knowledge of the fundamental biology of AAV as well as cooperative international research and clinical trials with meaningful input from patients
    corecore