2,385 research outputs found

    Pathotyping the Zoonotic Pathogen Streptococcus suis: Novel Genetic Markers To Differentiate Invasive Disease-Associated Isolates from Non-Disease-Associated Isolates from England and Wales.

    Get PDF
    Streptococcus suis is one of the most important zoonotic bacterial pathogens of pigs, causing significant economic losses to the global swine industry. S. suis is also a very successful colonizer of mucosal surfaces, and commensal strains can be found in almost all pig populations worldwide, making detection of the S. suis species in asymptomatic carrier herds of little practical value in predicting the likelihood of future clinical relevance. The value of future molecular tools for surveillance and preventative health management lies in the detection of strains that genetically have increased potential to cause disease in presently healthy animals. Here we describe the use of genome-wide association studies to identify genetic markers associated with the observed clinical phenotypes (i) invasive disease and (ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a multiplex PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease-associated groups, that performed with a sensitivity of 0.91, a specificity of 0.79, a negative predictive value of 0.91, and a positive predictive value of 0.79 in comparison to observed clinical phenotypes. We describe evaluation of our pathotyping tool, using an out-of-sample collection of 50 previously uncharacterized S. suis isolates, in comparison to existing methods used to characterize and subtype S. suis isolates. In doing so, we show our pathotyping approach to be a competitive method to characterize S. suis isolates recovered from pigs on UK farms and one that can easily be updated to incorporate global strain collections.This work was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) Knowledge Transfer Network CASE studentship co-funded by Zoetis (previously Pfizer Animal Health UK) and with significant contribution from BQP Ltd (Award Reference: BB/L502479/1). Funding bodies provided scholarship support but had no part in study design, data collection, analysis and interpretation of data or in writing the manuscript. AWT is supported by a BBSRC Longer and Larger (LoLa) grant (Award Reference: BB/G019274/1). LAW is supported by a Dorothy Hodgkin Fellowship funded by the Royal Society (Grant Number: DH140195) and a Sir Henry Dale Fellowship co-funded by the Royal Society and Wellcome Trust (Grant Number: 109385/Z/15/Z)

    Neuropathology in Mouse Models of Mucopolysaccharidosis Type I, IIIA and IIIB

    Get PDF
    Mucopolysaccharide diseases (MPS) are caused by deficiency of glycosaminoglycan (GAG) degrading enzymes, leading to GAG accumulation. Neurodegenerative MPS diseases exhibit cognitive decline, behavioural problems and shortened lifespan. We have characterised neuropathological changes in mouse models of MPSI, IIIA and IIIB to provide a better understanding of these events

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Primary mediastinal atypical meningioma: Report of a case and literature review

    Get PDF
    Meningiomas are common neoplasms arising from the central nervous system meninges. On the other hand, primary ectopic meningiomas are extremely rare and usually limited to the head and neck region or to the paravertebral soft tissues. Their occurrence in the mediastinum is even rarer. Until now, only 4 cases of primary mediastinal meningioma have been reported in the literature searched on Medline. Because of its rarity and intriguing pathogenesis, we report here a case of primary mediastinal meningioma that was treated by surgical resection. The clinical features, treatment, pathological findings, and prognosis are analyzed, and the literature on ectopic meningioma is reviewed

    mRNA quantification and clinical evaluation of telomerase reverse transcriptase subunit (hTERT) in intracranial tumours of patients in the island of Crete

    Get PDF
    Telomerase is a reverse transcriptase that maintains telomeres by adding telomeric TTAGGG repeats to the ends of human chromosomes. The aim of this study was to evaluate quantitatively the mRNA expression of telomerase catalytic subunit (hTERT) in different types of intracranial tumours in relation to their histologic pattern and grade and correlate it with progression-free (PFS) and overall survival (OS) of patients. Human telomerase reverse transcriptase mRNA levels were estimated by the use of real time RT–PCR in 68 samples of intracranial tumours. It revealed statistical correlation between hTERT mRNA expression levels and the grade of the tumours (P<0.001). Patients having negative expression of hTERT mRNA had statistically longer PFS (P=0.031) and OS (P=0.047). Cox univariate regression analysis revealed that hTERT mRNA-positive patients had a high and statistically significant risk of relapse (hazard ratio (HR) of 2.24 and P=0.038). In the Cox multivariate regression model, the levels of hTERT mRNA were adjusted for tumour grade and patients age, and since there was statistically significant relationship between the levels of hTERT mRNA and the grade of the tumours (P=0.003 or P=0.006, respectively), hTERT mRNA levels could not be considered as an independent prognostic factor for PFS or OS

    The Assessment of Post-Vasectomy Pain in Mice Using Behaviour and the Mouse Grimace Scale

    Get PDF
    Background: Current behaviour-based pain assessments for laboratory rodents have significant limitations. Assessment of facial expression changes, as a novel means of pain scoring, may overcome some of these limitations. The Mouse Grimace Scale appears to offer a means of assessing post-operative pain in mice that is as effective as manual behavioural-based scoring, without the limitations of such schemes. Effective assessment of post-operative pain is not only critical for animal welfare, but also the validity of science using animal models. Methodology/Principal Findings: This study compared changes in behaviour assessed using both an automated system (‘‘HomeCageScan’’) and using manual analysis with changes in facial expressions assessed using the Mouse Grimace Scale (MGS). Mice (n = 6/group) were assessed before and after surgery (scrotal approach vasectomy) and either received saline, meloxicam or bupivacaine. Both the MGS and manual scoring of pain behaviours identified clear differences between the pre and post surgery periods and between those animals receiving analgesia (20 mg/kg meloxicam or 5 mg/kg bupivacaine) or saline post-operatively. Both of these assessments were highly correlated with those showing high MGS scores also exhibiting high frequencies of pain behaviours. Automated behavioural analysis in contrast was only able to detect differences between the pre and post surgery periods. Conclusions: In conclusion, both the Mouse Grimace Scale and manual scoring of pain behaviours are assessing th

    Generation and evaluation of a glaesserella (Haemophilus) parasuis capsular mutant

    Get PDF
    Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer’s disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069Δcap) through allelic exchange following natural transformation. HS069Δcap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069Δcap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069Δcap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs

    Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices

    Full text link
    By stacking various two-dimensional (2D) atomic crystals [1] on top of each other, it is possible to create multilayer heterostructures and devices with designed electronic properties [2-5]. However, various adsorbates become trapped between layers during their assembly, and this not only affects the resulting quality but also prevents the formation of a true artificial layered crystal upheld by van der Waals interaction, creating instead a laminate glued together by contamination. Transmission electron microscopy (TEM) has shown that graphene and boron nitride monolayers, the two best characterized 2D crystals, are densely covered with hydrocarbons (even after thermal annealing in high vacuum) and exhibit only small clean patches suitable for atomic resolution imaging [6-10]. This observation seems detrimental for any realistic prospect of creating van der Waals materials and heterostructures with atomically sharp interfaces. Here we employ cross sectional TEM to take a side view of several graphene-boron nitride heterostructures. We find that the trapped hydrocarbons segregate into isolated pockets, leaving the interfaces atomically clean. Moreover, we observe a clear correlation between interface roughness and the electronic quality of encapsulated graphene. This work proves the concept of heterostructures assembled with atomic layer precision and provides their first TEM images
    corecore