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1. INTRODUCTION 

This paper deals with the following hyperbolic system 

ut - ux = u(X - u - av), (1.1) 

v, + vx = v{X - v - au), (1.2) 

in -1 < x < 1 and t > 0, with boundary conditions 

v = Ru a t x = - l , (1.3) 

w = Rv a tx = 1, (1.4) 

and initial conditions 

u = uQ(x) > 0, v = v0{x) > 0 at t = 0, (1.5) 

where u0 and v0 are C^functions satisfying (1.3), (1.4) and the additional compatibility 
conditions 

vi, + Rui = (a- Í)(R - \)Rul at x = - 1 , (1.6) 

«¿ + Rv^ = (a - 1)(1 - R)Rv¿¡ at x = 1. (1.7) 

Here, the real parameter X is a bifurcation parameter, while R > 0 and a are real constants. 
The model (1.1)—(1.5) is a sub-model of the normal form that is obtained in the weakly-

nonlinear analysis of the so-called oscillatory instability (see, e.g. [1]). That instability is of 
interest in many physical problems and has been observed experimentally in, e.g. binary ñuid 
convection [2-5], isothermal double diffusive convection [6], puré Rayleigh-Bénard convection 
(as a secondary instability of rolls) [7-9], the Taylor-Couette system [10, 11], several 
thermocapillary flows [12-14], electrodynamic convection in nematic liquid crystals [15-18], 
and several combustión systems [19-21]. 



Let us now explain briefly how these equations and boundary conditions are obtained. We 
consider a system of PDEs of the form 

3T=G{dX»U'£) in -L < X < L, T>0, (1.8) 

where u = (ult.... uN) is a function of the space variable X and the time T, e is a control 
parameter, and G is a nonlinear differential operator (invariant under space translations, 
X -» X + c and reflection, A' -»• -A0 such that G(d2/dX2, 0, e) s 0 (the uniform state w = 0 
satisfies the system of PDEs for all e). Also, we assume that the length L is large (as compared 
with the wavelength k^1 defined below) and impose appropriate boundary conditions at 
x = ±L/2, also invariant under reflection, and initial conditions at 7 = 0 , such that the 
resulting mathematical problem is well-posed. 

Let <p(o), k2, e) = 0 (w = growth rate, k = wavenumber) be the (complex) dispersión relation 
of the linearized versión of (1.8) about u = 0. We assume that the growth rates of the most 
unstable modes are of the form 

co ±/Q + c±e ± id{k - k0) - e±(k - k0f + o(\e\) + o(\k - k0\
2), 

as e 

co = ±iQ, + c±e T id(k + k0) - e±(k + k0)
2 + o(|e|) + o(\k + k0\

2), 

0 and k -» ±A:0, while Re cu < 0 otherwise (see Fig. 1). Here the constants Q, k0 and d 
are real, while c± and e± are complex and 

Q > 0, k0 > 0, d * 0, Re c± > 0, 

c^ = c+, e_ = e+, 

Re e± > 0, (1.9) 

(1.10) 

where / is the imaginary unit, and Re and overbars stand for the real part and the complex 
conjúgate respectively. Notice that the associated neutrally stable modes at e = 0 are of the 
form 

u = U0[A exp(/Q7 + ik0X) + Bexp(iQT - ik0X)] + c e , (1.11) 

Re(oü) / 

Fig. 1. Dispersión relation near criticality 

e <0 



for a certain eigenvector U0 e C , where the complex constants A and B are arbitrary and ce. 
stands for the complex conjúgate. That mode is the superposition of two counter-propagating 
wavetrains. The weakly nonlinear evolution of that pair of waves, as e -» 0, is described by 
allowing the small complex amplitudes A and B to depend weakly on A" and Tand considering 
higher order terms (proportional to A2, B2, \A\2, \B\2, Ax, Bx, Axx, Bxx, AT, BT, A\A\2, 
A\B\2, B\A\2, B\B\2,...) in (1.8). If, in addition, the appropriate solvability conditions are 
applied at each asymptotic order, then the following equations are obtained for the evolution 
of A and B, 

AT = e+Axx + dAx + c+eA + giA\A\2 + g2A\B\2 + •••, (1.12) 

BT = e+Bxx - dBx + c+sB + gxB\B\2 + g2B\A\2 + •••, (1.13) 

where the coefficients c+, d and e+ are as defined above, and the complex coefficients gx 

and g2 depend on the quadratic and cubic nonlinear terms of (1.8). Equations (1.12) and 
(1.13) may be obtained quite directly by symmetry considerations (see [22]) but the actual valúes 
of the coefficients gt and g2 must be obtained by the process described above (which usually 
leads to quite tedious calculations). Equations (1.12) and (1.13) apply only in the bulk, i.e. 
as -L < X < L and |X ± L \ > 1. In addition we must consider two boundary layers near the 
ends of the interval, 0 < X + L - 1 and 0 < L - X ~ 1. When the weakly nonlinear behavior 
in these boundary layers is calculated and matching conditions with the solution in the bulk are 
applied, the following boundary conditions are obtained for the complex amplitudes A and B, 

B = rA+-- atX=-L, A = rB + ••• at X = L, (1.14) 

d(Bx + rAx) = (gl - g2)r(\r\2 - 1)A\A\2 + ••• at X = -L, (1.15) 

d(Ax + rBx) = (g2 - gl)r(\r\2 - VB\B\2 + ••• at X = L, (1.16) 

where the constants d, gx and g2 are as defined above, and the complex constant r ^ 0 is a 
reflection coefficient that depends on the linearized versión of (1.8) and on the associated 
boundary conditions at X = ±L. Conditions (1.14) account for linear reflection of the 
wavetrains at the boundary layers, that absorb a part of the incoming wave if \r\ < 1, and 
amplify it if \r\ > 1; they were first obtained by Cross [23]. The nonlinear boundary conditions 
(1.15) and (1.16) take into account higher order effeets, and have been obtained by the authors 
of this paper [24, 25]. 

Several remarks about equations (1.12)—(1.13) and boundary conditions (1.14)—(1.16) are in 
order: 

(a) For the sake of clarity we considered the 1-D problem (1.8), but (1.12)—(1.16) are also 
obtained from multidimensional problems, see [24, 25]. 

(b) The normal form (1.12)—(1.16) depends on the PDEs (1.8) and on the associated 
boundary conditions only through the valúes of its coefficients, that may be calculated by the 
process described above. Alternatively, the coefficients may be estimated by a direct 
quantitative comparison between the solutions of (1.12)—(1.16) and either experimental results 
from the underlying physical problem or direct numerical simulations on (1.8). 

(c) Equations (1.12)—(1.16) are invariant under the transformation A -» B, B -* A and 
X -* -X [as a consequence of the invariance of (1.8) and the associated boundary conditions 
under spatial reflection]. 



(d) The coefficient of Ax and -Bx in (1.12)-(1.13), d (that is, the group velocity), is nonzero 
[see (1.9)]; in fact, the generic assumption d ^ 0 is essential in the derivation of the boundary 
conditions (1.15)—(1.16). On the other hand, the weakly nonlinear level of the asymptotic 
analysis requires essentially that 

\AXX\ < \AX\ < \A\ < 1, \BXX\ -4 \BX\ < \B\ < 1, 

and this implies that equations (1.12) and (1.13) necessarily contain terms that are not of the 
same order of magnitude. This could be seen as a strong difficulty [26] but, although it leads 
to some subtleties in the analysis, it allows us to consider two distinguished simpler submodels 
of (1.12)—(1.16) that are more amenable to purely analytical treatment. For an asymptotic 
derivation of these submodels, see [24, 25]; here we only give a brief description of them. 

The trivial steady state of (1.12)-(1.16), A = B = 0, corresponds to the basic steady state of 
(1.8), w = 0. After linearizing (1.12)—(1.16) about that steady state, it is readily seen that it is 
asymptotically stable only if 

£ < ec = -(rf/(2LRec+))log|H + o(L~l) 

and two distinguished limits must be considered 

\E - ec\ ~ L~2, \A\~\B\~L~\ (1.17) 
and 

\e\~L-\ \A\~\B\~ L~in. (1.18) 

In the limit (1.17) we must consider one spatial scale, x = X/L ~ 1 and two time scales, 
t = T/L ~ 1 and x = T/Ü ~ 1, and the evolution of the complex amplitudes, A and B, in the 
slower time scale, T ~ 1, is given by a nonlocal, complex Ginzburg-Landau equation [24, 25]. 
Particular versions of this nonlocal submodel, applying only to the case of perfectly reflecting 
boundaries, \r\ = 1, were obtained independently in [27, 28] by means of formal, two-timing 
perturbation methods; for a rigorous justification of the derivation, see [29]. That equation 
predicts some interesting complex large-time behavior of the wavetrains [24, 25], but it applies 
only in a very narrow región cióse to the instability limit, \e - ec\ ~ L~2 [see (1.17)]. 

The limit (1.18) corresponds to a wider interval for the bifurcation parameter, 
|e - ec| ~ L_1. If we re-scale the variables and the bifurcation parameters as 

e = fi/L, A = Ax¡Ún, B = Bx/Ú
n, X = xL, T= tL/\d\ 

with \fi\ ~ \A¡\ ~ \Br\ ~ t ~ 1, then (1.12)—(1.16) may be written in first approximation as 

Au = (dAlx + nc+Ax + glAMi\2 + g2AM2)/\d\, (1.19) 

Bu = (-dBlx + nc+Bx + g.BM2 + foB.UxIVIrfl, 0-20) 

Bx = rAx a tx = - 1 , Ax = rBx at x = 1, (1.21) 

d(BXx + rAXx) = (gx - g2)r(\r\2 - Wi\Ax\
2 a tx = - 1 , (1.22) 

d(AXx + rBXx) = (g2 - gx)r{\r\2 - \)BX\BX\2 at * = 1, (1.23) 
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where, in particular, we have ignored the second derivatives (that is, diffusion and dispersión) 
in (1.19)-(1.20). But a natural question arises on whether this approximation makes sense. This 
is a stability question (the second derivatives may be ignored if small perturbations depending 
on intermediate spatial scales, £, = X/d ~ 1, with 1 < ó < L, are damped out as time proceeds) 
that has been partially solved in [24, 25], where it has been shown that the second derivatives 
cannot be ignored if either 

Reg! > 0 , o r R e g ! < 0 and Re(e+g,) > 0. (1.24) 

while they can be neglected if 

R e g , < 0 and 2 Re(e+) Re(gx) < Re^+f^ < 0. (1.25) 

Notice that these conditions depend only on gx and c+ (but neither on the remaining 
parameters, ñor on initial conditions). Some partial analytical results (concerning particular 
valúes of the remaining parameters) and some numerical simulations with (1.12)—(1.16) 
made us to conjecture that the approximation is also valid if Regí < 0 and Re(e+gi) < 
2 Re(c+) Re(g!). Anyway, if (1.25) holds then the submodel (1.19)-(1.23) applies. Then, if the 
group velocity d is positive, and the new variables and parameters 

u = -2Re gx\Ax\
2/\d\, v = -2Re*i|J?il2/|rf|, 

X = 2/uRec+/|í/|, a = Reg2/Reg1( R = \r\2, 

are introduced, then (1.19)-(1.21) is rewritten as (1.1)-(1.4), while (1.22)-(1.23) is rewritten as 

vx + Rux = (a - \){R - \)Ru2 at x = - 1 , (1.26) 

ux + Rvx = (1 - a)(R - \)Rv2 at x = 1. (1.27) 

If the group velocity d is negative, then (1.1)-(1.4), (1.26)-(1.27) is still obtained if 

« = -2Reg1 |5,|2/|rf|, v=-2Re«1 | / l1 |2 / |rf | , R = \r\~\ 

while X and a are defined as above. 

Notice that, since Reg! < 0 [see (1.25)], then u and v are nonnegative. In fact, we shall 
assume that 

H > 0 and v>0 i n - l < * < l , / = 0, (1.28) 

and this will imply that u > 0 and v > 0 if -1 < x < 1, t > 0. Also, the additional conditions 
(1.26)-(1.27) are precisely compatibility conditions for the hyperbolic problem (1.1)-(1.4) such 
that, if they hold at t = 0 [as is assumed, see (1.6)-(1.7)] then they hold for all t > 0, and allow 
the unique solution of (1.1)—(1.4) to be a C'-solution. 

The dynamics of (1.1)—(1.4) is in good qualitative and quantitative agreement with 
experimental results in the literature concerning physical systems exhibiting the oscillatory 
instability, see [24,30]. The dynamics is quite rich if a > 1, and includes at least period-doubling 
sequences, intermittency, quasiperiodic behavior and crises associated with symmetry gaining 
[24, 30]. If a < 1 instead, numerical results seem to show that the dynamics of (1.1)—(1.4) is 
very simple; namely, the solutions either converge to a steady state or blow up. The main object 
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Fig. 2. Sketch of the large time behavior of the solutions of (1.1)-(1.4) for: (a) - l < a < 1 and 
( b ) a < - 1 . 

of this paper is to show analytically that this conjecture is true, namely we shall show that (see 
Fig. 2 for a sketch of these results): 

(a) If a < -1 then (1.1)-(1.7) possess solutions that diverge, in finite time if a < -1 or as 
t -> oo if a = - 1 , while if a > - 1 , then the solutions of (1.1)—(1.7) are uniformly bounded in 
O < t < 00. 

(b) If a > -1 and A < -(log R)/2, then every solution of (1.1)-(1.7) converges uniformly to 
u - v - O as t ^ <x>. 

(c) If -1 < a < 1 and A > -QogR)/2 then as t -» oo every solution of (1.1)—(1.7) converges 
uniformly to a unique steady state, (us, t;s), such that us > O and vs > O in -1 < x < 1. 

More precisely, the following results concerning the problem (1.1)—(1.7) will be proven: 
(i) That problem has a unique solution in O < t < T, for some T < oo (Theorem 3.1). 
(ii) If a < - 1 , X < -(log/?)/2 and the initial conditions are sufficiently large, then the 

solution becomes unbounded in finite time (Theorem 3.8B); if the initial conditions are 
sufficiently small, then the solution converges uniformly to (u, v) = (O, 0) as t -» oo (Remark 
3.9). 

(iii) If a < -1 and X > -(log/?)/2 then every solution becomes unbounded in finite time 
(Theorem 3.8A). 

(iv) If a = -1 and X = -(logR)/2 then (1.1)—(1.3) has infinitely many steady states 
(Section 2). 

(v) If a = -1 and X > -(log/?)/2 then every solution becomes unbounded as / -> T, 
where T< oo (Theorem 3.8A). 

(vi) If a > -1 and A < - (log R)/2 then every solution converge uniformly to (u, v) = (0,0) 
as t -* oo (Theorems 3.7 and 3.11). 

(vü) If -1 < a < 1 and A > -(logR)/2 then, as t -» oo, every solution converge uniformly 
to a steady state, (us, vs), such that us > O and us > O in -1 < x < 1 (Theorems 3.5 and 3.14). 

(viii) If a > 1 and A > -0og/?)/2 then every solution is globally defined and uniformly 
bounded in O < / < oo (Theorem 3.11). 

The paper is organized as follows. The steady states of (1.1)—(1.4) are briefly considered in 
Section 2. Global existence and uniqueness, along with properties (b) and (c) above are 
considered in Section 3. Finally, some concluding remarks are drawn in Section 4. 



2. STEADY STATES 

The steady states of (1.1)—(1.4) are given by 

áu/dx = -u(X - u - av), (2.1) 

áv/áx = v(X - v - au), (2.2) 

in -1 < x < 1, with boundary conditions 

v = Ru a t x = - l , u = Rv a t J f = l . (2.3) 

As pointed out in Section 1, we are interested only in those solutions of (2.1)-(2.3) such that 
« > 0 and v > 0 in -1 < x < 1; then uniqueness of the ODEs (2.1)-(2.2) and the boundary 
conditions (2.3) readily imply that either 

u > 0 and v > 0 in -1 < x < 1 (2.4) 

ort/ = v = O i n - l < J t < l . 
The solutions of (2.1)-(2.4) may be found in closed form if a = - 1 , 0 and 1. If a = -1 and 

X = -(log/?)/2, then (2.1)-(2.4) has the one-parameter family of solutions 

u(x) = v(-x) = ([-~)Rx/2llc - Rxn - R~x/X (2.5) 

if R *• 1, where the parameter c varíes in the interval - » < c < 2 i f / ? < l , and in the interval 
-JR + 1/V/? < c < oo if R > 1; if R = 1, then 

u(x) = v(x) = c, (2.6) 

with the parameter c such that O < c < oo. If a = -1 and X * -(log R)/2, then (2.1)-(2.4) has 
no solution. 

If a = O and X > -(log/?)/2, then (2.1)-(2.4) has a unique solution, that is given by 

u(x) = v(-x) = X(R ex - e"x)/[/? ex - e"x - (R - 1) e ^ (2.7) 

if X * O, while if X = O then 

u(x) = v{-x) = (R - \)/[R + 1 - x(R - 1)]. (2.8) 

If a = O and X < -(logi?)/2, then the problem (2.1)-(2.4) has no solution. 
For the sake of brevity we do not write down the solutions of (2.1)-(2.4) for a = 1, that will 

not be used in the sequel. 
If a * - 1 , O, 1, then (2.1)-(2.2) still has the first integral 

\u + v-X\l~a = Cuv, (2.9) 

where C is a nonnegative constant, the problem (2.1)-(2.4) may be solved by quadratures and 
the existence and multiplicity of steady states are easily discussed (although the complete 
discussion is somewhat tedious because several cases must be considered, see [30]). Here we do 
not pursue those results any further because they are apart from the main object of this paper; 
some of them (i.e. those corresponding to the case a < 1) will be obtained in Section 3, as a 
by-product of global stability results. 



3. LARGE-TIME BEHAVIOR PROPERTIES 

if t > 0, 

if t > 0. 

(3.1) 

(3.2) 

(3.3) 

Here we give the main results of the paper, concerning the large time behavior of the 
solutions of the problem (1.1)—(1.4), (1.28), that is written again here for convenience 

ut — ux = u(k — u — av), 

vt + vx = v(X - v - aú), in -1 < x < 1, 

v = Ru a t x = - l , u = Rv a t x = l , 

The initial conditions are 

w = u0(x) and v = v0(x) at t = 0, (3.4) 

where «0 and v0 are C'-functions satisfying (3.3) and 

u0 > 0, v0 > 0 i n - l < x < l , (3.5) 

i/¿ + Ru¡¡ = (a - l)(fl - l)Ru2 at * = - 1 , (3.6) 

u¿ + Rvf, = (1 - a)(2? - l}Rvl at x= 1. (3.7) 

Global existence and uniqueness is first considered in the following theorem. 

THEOREM 3.1. Under the assumptions above, (3.1)-(3.7) has a unique solution in -1 < x < 1 
and 0 < t < T < <», that is a C'-function of x and t, and satisfies 

vx + Rux = (a - \){R - l)Ru2 at x = - 1 , (3.8) 

w, + /?üx = (1 - a)(R - l)Rv2 at JC = 1, (3.9) 

u > 0, i; > 0, (3.10) 

in 0 < t < Tand -1 < x < 1. Also, the interval 0 < t < 7Ms maximal in the following sense: 
either (i) T = w, or (ii) T < oo and 

limsup[||ii(-,Ollc<o + Ik-.OlItw] = °° (3-n> 
as t-* T~, where/= [-1, 1]. 

Proof. The semilinear problem (3.1)-(3.4) is a particular case of that considered in [31, Chap. 
5, Section 6.5]. By applying that result we get local existence and uniqueness of a C1 solution 
that satisfies (3.8)-(3.9) in x e /, 0 < t < 7¿, for a certain constant T0 that depends only on A, 
a, R and ||M0||C(/) + ||t>ollc(j); by applying the same result, that solution is seen to be 
continuable to [0, T0] U [T0, TJ U ••• = [0, T[, and if T< oo, then (3.11) holds because 
otherwise the solution would be continuable beyond t = T. Finally, in order to prove that (3.10) 
holds, assume for contradiction that there is a first valué of t, tl < T, such that either 
"(*i> ¿i) = 0 or v(xlf t¡) = 0 for a certain xx 6 /. If -1 < xx < 1 and u(xit tj = 0 (resp., 
v(xl,tí) = 0) then by integrating (3.1) (resp., (3.2)) backwards along the characteristic 
x + t = xx + tl (resp., x - t = Xi - t{), uniqueness of the resulting ODE implies that 
u(xx + tx - t, t) = 0 (resp., v(xl - tx + t, t) = 0) in tx - e < t < tx for a certain constant 
e > 0, and this is in contradiction with the definition of tt. Similarly, if xx = -1 (resp., xx = 1) 
then u(Xi, tx) = v(xx ,tx) = 0 [see (3.3)], and a contradiction is reached as above, by integrating 
(3.1) (resp., (3.2)) backwards along the characteristic x + t = xx + tx (resp., x - t = xx - tx). 
Thus the proof is complete. 



The following comparison result will be applied systematically below to obtain global 
stability results. 

LEMMA 3.2. Let t/and Kbe C'-functions of x and / i n - l < x < l , 0 < r < Tsuch that 

Ut- Ux + MU > 0, Vt + Vx + MV > 0 in -1 < x < 1, (3.12) 

V>rU a t x = - l , U>rV a t x = l , (3.13) 

whenever 0 s t < T, where r > 0 and M are given constants. If, in addition, 

U>0 and V>0 i n - l < x < l , (3.14) 

at t = 0, then (3.14) holds for all t e [0, T]. 

Proof. Assume for contradiction that (3.14) does not hold in 0 < t < T. Since t/and Fare 
continuous and (3.14) holds at t = 0, there is a first valué of t, tx such that 0 < íx < Tand 
either Ufa,^) = 0 or V(xx,tx) = 0 for some xt e [-1,1]. According to (3.13) and the 
defínition of /,, if V(-\, t¿ = 0 (resp., í/(l, tx) = 0) then t / (- l , t^ = 0 (resp., V(\, t¡) = 0). 
As a consequence, we may assume that either 

-1 < xi < 1 and U(xu t¿ = 0, (3.15) 
or 

-1 < *i < 1 and V(xlt tx) = 0. (3.16) 

But if (3.15) (resp., (3.16)) holds, we may intégrate the first (resp., the second) inequality (3.12) 
backwards along the characteristic x + t = xx + tx (resp., x - t = xx - tx) and apply 
Gronwall's Lemma to obtain C/(Xi + tx - t, t) < 0 (resp., V(x1 - tx + t,t) < 0) in 
í, - e < / < t1 for a certain constant e > 0. This is in contradiction with the defínition of t1, 
and the result follows. 

3.1. The monotone-flow case: a < 0 

If a < 0 then the system (3.1)—(3.3) is cooperative and defines a monotone flow as it will be 
seen below. To this end we first define sub- and super-solutions of (3.1)-(3.3) as follows. A pair 
of C^functions K and v, of [-1,1] x [0, T] into IR, will be called a sw/?e/--so/w/ion of (3.1)-(3.3) 
if they satisfy 

u, - ux > «(A - u - av), (3.17) 

vt + vx > v(k - v - aü), in -1 < x < 1, (3.18) 

v>Ru a t x = - l , u>Rv a t x = l , (3.19) 

for all t e [0, T]. Sub-solutions are defined similarly, by reversing the above inequalities. 

LEMMA 3.3. If a s 0, let (ulf vj and (u2, v2) be a sub- and super-solution respectively of 
(3.1)-(3.3) in [0, í0]. If MX > 0, vx > 0 in -1 < x < 1, 0 < t < t0 and 

»! < w2 and î ! < f2 in - 1 < x < 1 (3.20) 

at f = 0, then (3.20) holds for all t e [0, t0]. 



Proof. Let í, > O be defined by 

tx = supfr e [O, /„]: (3.20) holds if 0 < t < T). 

By continuity, tx > 0. Let A" be a common upper bound of ux, Vi, u2 and v2 in [-1, 1] x [0, tt] 
and let the constant M be defined by M = 2K - A. Then (7 = M2 - «i and K = v2 - t), are 
readily seen to satisfy the assumptions of Lemma 3.2 in [-1, 1] x [0, / J . As a consequence 
(3.20) also holds at t = tx; by continuity tx = t0 and the result follows. 

The result in Lemma 3.3 readily implies that (3.1)-(3.3) defines a monotoneflow, i.e. that if 
(«i, Vi) and (w2. fi) are two C^solutions of (3.1)—(3.3) satisfying (3.20) at t = 0, then they also 
satisfy (3.20) for all t > 0. 

LEMMA 3.4. If a < 0, let («, v) be a positive solution of (3.1)-(3.4) satisfying (3.5)-(3.7) initially 
and let T > 0 be as defined in Theorem 3.1. If 

ut > 0 and vt > 0 (resp., u, < 0, t>, < 0) i n - l < x < l , í = 0, (3.21) 
then 

ut > 0 and t>, > 0 (resp., w, < 0, v, < 0) i n - l < x < l , 0 < t < T. (3.22) 

Proof. By continuity w( > 0 and v, > 0 (resp., wf < 0 and y, < 0) in [-1, 1] x [0, t0] for a 
certain constant t0 > 0. If 0 < e < t0 and the functions «£ and ve are defined as 
M*' O = "(-^J ^ + £) a nd f£(^, 0 = v(x, t + e), then (ul3 vx) = (M, v) and (w2, ti2) = («e, ̂ «) 
(resp., («j, ÜJ) = (ue, ve) and («2, v2) = («, y)) satisfy the assumptions in Lemma 3.3. As a 
consequence u(x, t) < u(x, t + e) and v(x, t) < v(x, t + e) (resp., u(x, t) > u(x, t + e) and 
v(x, t) > v(x, t + e)) in [-1,1] x [0, T - e] whenever 0 < £ < ¿0, and the mean function 
theorem implies that (3.22) holds, as stated. 

THEOREM 3.5. If -1 < a < 0 and A > -(log/?)/2, then (3.1)-(3.3) has a unique steady state 
satisfying 

us > 0 and vs > 0 in -1 < x < 1, (3.23) 

and every solution of (3.1)-(3.7) is such that u and v remain uniformly bounded above for all 
/ > 0 and satisfy 

u -> us and v -• vs as / -» <», uniformly in -1 < x < 1. (3.24) 

Proof. The proof consists of 5 steps. 

Step 1. There is a constant e0 such that if 0 < e < e0 then the functions u0 and u0 defined as 

u0{x) = v0(-x) = (1 - a) - 1 sinh(e) 

satisfy (3.3), (3.5)-(3.7), and the associated solution of (3.1)-(3.7), (w, v), is such that 

üt>0, vt>0 and (ü + v)dx<—-—^— (3.25) 
J-i 1 + a 

in -1 < x < 1, 0 < / < T. 

logR 
sinh(e) - sinh 

logR -(e-Qo&R)/2)x 



The functions uQ and v0 are obtained upon substitution of k by e - (log R/2) in the steady 
state (2.7), and multiplication by (1 - a) - 1 . If we choose e > 0 sufficiently small, then w0 and 
v0 satisfy (3.3), (3.6), (3.7) and 

0 < «o, 0 < v0, 

-w¿ < u0(X - «o - av0), vó < y0(A - v0 - au0) 

in -1 < x < 1 and, according to Theorem 3.1 and Lemmas 3.3 and 3.4, the associated solution 
of (3.1)-(3.4), (H, v), exists in 0 < t < Tana satisfies ü > 0, v > 0 and the first two inequalities 
in (3.25). 

Now, when dividing (3.1) and (3.2) by u and v respectively, adding the resulting equations, 
integrating in -1 < x < 1, taking into account the boundary conditions (3.3) and replacing 
(w, V) by («, v), we obtain 

j log(üv) dx = 4A + 2 log R - (1 + a) (ü + v)dx, (3.26) 

and, since the derivative of Jí.! log(wü)dx is nonnegative (it is a monotonously increasing 
function in t), the third inequality in (3.25) follows and the proof of the step is complete. 

Step 2. The solution of (3.1)-(3.3) considered in Step 1, (S, v), exists for all t > 0 and satisfies 
(3.24), where (ws, vs) is a steady state of (3.1)-(3.3) such that (3.23) holds. 

Let us see first that there exists a constant K > 1 such that 

ü(x, t) < Kü(x', t) (3.27a) 

and 
v(x', t) < Kv(x, t) (3.27b) 

for -1 < x < x' < 1 and d < t < T, where <5 = min{2, 772) > 0. To this end assume first that 
0 < x ' - x = ¿;<<5 and intégrate equation (3.1) along the characteristic line passing through 
the points (x, t) and {x + £, / - £) (=(x', t - £)) to obtain (after replacing (u, v) by (w, v)) 

ü(x, t)/u(x + £,t - £) = exp (-A + ü(x + s, t - s) + av(x + s, t - s)) ás 
o 

or, when using (3.25), 

ü(x, t)/ü(x', t) < el
xlí+íofl<r+''')'i' < eW«+lL,fl(r.o<u < Ki 

if -1 < x < x' < 1, x' - x < ó and ¿ < / < T, where ̂  = e
|x|a+(2X+log/J)/(1+a). Now, in order 

to cover the general case -1 < x < x' < 1 (0 < x' - x < 2), we can apply the last inequality 
successively to obtain 

" (X ' ^ < AT," = if, if -1 < x < x' < 1 and ¿ < í < T, 
M(X , O 

where n is the integer number given by nó < 2 < (« 4- l)<í; thus the inequality (3.27a) has been 
obtained [the second inequality (3.27b) is obtained in a completely similar way]. 



Now, when setting x = -1 in (3.27a) and integrating in -1 < x' < 1 we obtain 

K f1 

w(-l, 0 ^ - r " (*'' ^ djf ' i f ¿ ~ ' < r ' 

Therefore w(-l, f) is bounded [see (3.25)] and v(-l, t) is also bounded [as it follows from the 
boundary condition (3.3) at x = -1], and this implies [setx = -1 in (3.27b)] that v(x, t) is 
uniformly bounded in -1 < x < 1 and S < t < T. As a consequence, M(1, /) is bounded [use 
the boundary condition (3.3) at x = 1] and then H(X, t) is also uniformly bounded, as it follows 
by setting x' = 1 in (3.27a). 

Once we have proved that ü and v are uniformly bounded in -1 < x < 1 and ó < t < T, 
Theorem 3.1 ensures that ü and v exists for all t > 0 (i.e. T = ») . And, as soon as the bounds 
obtained above do not depend on T if T is sufficiently large, we can conclude that ü and v are 
uniformly bounded for all t > 0. 

Finally, in order to pro ve that (w, v) satisfy (3.24), notice that the monotone bounded 
functions t -* «(•, t) and t -* v(-, t) converge pointwise in -1 < x < 1 to some functions us(x) 
and vs(x) as / -> » and the functions ü and t¡, defined as ü(x, t) = ü(x, t - x + 1) and 
v(x, t) = v(x, t + x + 1), also converge pointwise to us and vs: notice that 

ü(x, t) < ¿}(x, t) < ü(x, í + 2) < ws(Ar), 
(3.28) 

v(x, t) < t;(x, t) < t;(x, í + 2) < ys(x), 

i n - l < x < l , ? > 0 . These functions and their spatial derivatives 

üx(x, t) = üx(x, t - x + 1) - üt(x, t - x + 1) 

= -ü(x, t - x + 1)(A - ü(x, t - x + 1) - <xv(x, t - x + 1)), (3 29) 

vx(x, t) = vx(x, t + X + 1) + ^(x, í + X + 1) 

= D(x, t + x + 1)(A - v(x, t + x + \) - aü(x, t + x + 1)), 
are uniformly bounded (from above and from below), henee ü and v are uniformly convergent, 
and (3.28) readily implies that ü -» us and v -> vs uniformly i n - l < x < l as/-><». Finally, 
by using (3.29) it is readily seen that us and vs are classical solutions of (2.1)-(2.2) [i.e. steady 
states of (3.1)-(3.3)], and the proof of the step is complete. 

Step 3. There is a unique steady state of (3.1)-(3.3) satisfying (3.23). 
Let (u¡, v¡) and (u¡, v¡) be two steady states of (3.1)-(3.3) satisfying (3.23), and let e be such 

that 0 < e < e0 and the functions u0 and v0 defined in Step 1 satisfy uQ < »* and t;0 < v* 
in -1 < x < 1 for k = 1 and 2. Then, according to Lemma 3.3, the associated solution of 
(3.1)-(3.4) satisfies ü < w* and v<t>*in -1 < x < 1, t > 0, and the limiting steady state 
obtained in Step 2 is such that 

us < u* and vs < y* in -1 < x < 1 for k = 1 and 2. 



On the other hand, the steady state satisfy (2.1)-(2.3). If (2.1) and (2.2) are divided by u and 
v respectively, the resulting equations are added and integrated in -1 < x < 1, the boundary 
conditions (2.3) are taken into account and («, v) is replaced by (us, VS), (U¡, V¡) and («,, vi), 
then we obtain 

AX + 21ogi? = (1 + a ) (us + vs)dx = (1 + «) 1 (wj + v¡) áx = (1 + a)\ iu] + vi) áx, 

that, together with the inequalities above, implies u¡ = ul = us and v¡ = vi = vs, and the 
result folio ws. 

Step 4. The steady state of (3.1)-(3.3) satisfying (3.23) is such that 

us -* oo and t;, -» oo uniformly in -1 < x < 1, (3.30) 

as X -> oo (with a and R fixed). 
Let (u¡, v¡) and (ul, v*) be the steady states of (3.1)-(3.3) corresponding to two valúes of a, 

OÍ! and a2, such that 0 > a 1 > a 2 > - l (and the same valúes of X and R). According to Steps 
1 and 2, (u¡, v¡) and (uj, vj) may be obtained as limits from below of solutions of (3.1)-(3.3) 
(for a — ai and Q!2 respectively), that may be chosen such that (3.20) holds at t = 0. Then, 
according to Lemma 3.3, (3.20) holds for allí > 0 and we have u¡ < u¡ and v\ < v2

s. As a 
consequence, both us and t>s increase when a decreases and we only need to prove that (3.30) 
holds for a = 0; but this is readily obtained from the closed-form expressions, (2.7) or (2.8), for 
the steady states in that case. 

Step 5. Every solution of (3.1)-(3.7) is such that (3.21) holds. 
Let (M, V) be any solution of (3.1)-(3.4) such that (3.5)-(3.7) holds, and let («,, vt) and 

(i/2, v2) be solutions of (3.1 )-(3.3) such that {u^-,0), v^-, 0)) is as in Step 1, with e > 0 suffi-
ciently small, and (u2(-, 0), v2(-, 0)) is the steady state of (3.1)-(3.3) satisfying (3.23), corre
sponding to a sufficiently large valué of X, such that (Step 4) 

«! < u < «2, vx < v < v2 in -1 < x < 1, 

uit > 0, vu > 0, u2t < 0, v2í < 0 in -1 < x < 1, 

at í = 0. Then, according to Lemma 3.3, the inequalities above hold for all / > 0 and, as in the 
proof of the results in Steps 1 and 2, (« l t vx) and (u2, v2) are seen to satisfy (3.24). Then the 
result in this step follows and the proof of the theorem is complete. 

Remark3.6. In the proof of Step 4 above it has been shown that the steady state of (3.1)-(3.3) 
satisfying (3.23), (ws, vs), is such that both us and vs increase as a decreases. The same argument 
shows that us and vs increase as either X or R increases. 

THEOREM 3.7. If -1 < a < 0 and X < -(log/?)/2, then any solution of (3.1)-(3.7) is such that 
u and v remain uniformly bounded above for all t > 0 and satisfy 

u -» 0 and v -» 0 as /-> oo, uniformly in -1 < x < 1. (3.31) 



Proof. Let («2> v2) be as defined in the Step 5 of the proof of Theorem 3.5. Then, it is seen 
that (w2, v2) satisfies 

u2 -* us and v2 -> vs as t -* oo, uniformly in -1 < x < 1, 

where us > 0 and vs > 0 is a steady state of (3. l)-(3.3), i.e. satisfy (2. l)-(2.3). But the boundary 
conditions (2.3) and the uniqueness of the ODEs (2.1) and (2.2) imply that either us = vs = 0 
or us > 0 and vs > 0 in -1 < x < 1; the latter cannot hold because if u5 and vs were strictly 
positive then (Step 3 of Theorem 3.5) 

0 > 4A + 2 log R = (1 + a) I (us + vs) dx > 0. 

Therefore, («, v) satisfy (3.31) and the proof is complete. 

We now consider the critica! and sub-critical cases, a = -1 and a < -1 respectively. 

THEOREM 3.8. A. If either a = -1 and X > -(\ogR)/2 or a < -1 and A > -(log/?)/2, then 
every solution of (3.1)-(3.7) becomes unbounded as / -* T < «J, where T (depends on the 
solution and) is finite in the second case. 

B. If a < -1 and k < -(log/?)/2 then every solution of (3.1)-(3.7) with \l_1log(uv)dx 
sufficiently large at t = 0 becomes unbounded in finite time. 

Proof. 
A. Let (u, v) be a solution of (3.1)-(3.4) satisfying (3.5)-(3.7) initially. If a < -1 then we 

may use Jensen's inequality (J* exp(/(jf)) dx: > exp[(¿> - a)"1 {* f(x) dx] if 0 < b - a < oo, see, 
e.g. [32, pp. 136-138]) to obtain the following inequality from (3.26) 

d f1 

— log(wt;) dx > 41 + 2 log R - 2(1 + a) exp 
a/ l_, 

i 

log(wt;) dx/4 (3.32) 

Now, from (3.32), u and v are readily seen to satisfy j ! _ t log(wt;) dx > g(t), where the function 
g is the unique solution of 

g' = 4A + 2 log R - 2(1 + a) exp(g/4) if t > 0, 

fi (3.33) 
g(0) = log[«(x, 0)v(x, 0)] dx > 0, 

thus, if a < -1 and A > -(log/?)/2 we have g(t) - > « as í - » r < » , and if a = -1 and 
A > -(log/?)/2 then ^(0 -* oo as / -> oo, and the result follows. 

B. As in the proof of part A, («, v) satisfy (3.32) and if 

i 

log[H(0, x)v(0, x)] dx > 41og[(2A + log/?)/(l + a)] 
- i 

then we have from (3.33) that g(t) -• oo in finite time, and the result follows. 



Remark 3.9. If a < - 1 , A < -(log/?)/2 and u0 and v0
 a r e sufficiently small in -1 < x < 1, 

then the solution of (3.1)-(3.4) satisfies (3.31), as it is readily proved by means of the arguments 
in the proof of Theorem 3.5 and in the proof of Theorem 3.7. Furthermore, if a < -1 and 
A < -(logi?)/2, then (3.1)-(3.3) has a steady state satisfying (3.23), (us, vs), and us and v¡ 
increase as A decreases; notice that the system (2.1)-(2.3) is invariant under the transformation 
(ws, vs) -> (vs, us)/\a\, a -* \/ct, A -» -A and R -* l/R and use the results in Theorem 3.5 and 
Remark 3.6. Then, when using the monotony of the flow defined by (3. l)-(3.3), as in the proofs 
of Theorems 3.5, 3.7 and 3.8, it may be shown that if u0 < us and t>0 < vs (resp., u0 > us and 
v0 > vs) the solution of (3.1 )-(3.4) satisfies (3.31) (resp., diverges in finite time). 

3.2. The nonmonotone-flow case: a > 0 

If a > 0 the system (3. l)-(3.3) is no longer co-operative, the associated flow is not monotone 
and standard comparison methods are of limited scope. They will provide global asymptotic 
stability if A < -(log R)/2 and global bounds of the solutions if A > -(log R)/2. More precise 
global stability properties in the case A > -(log/?)/2 will be obtained below by means of 
coupled sub- and super-solutions. That technique has been successfully used to prove existence 
[33] and global stability properties [34-36] of parabolic systems. 

We first consider the foliowing comparison result. 

LEMMA 3.10. If a > 0, let (u, v) be a solution of (3.1)-(3.7), and let («, v) be a solution of the 
problem that is obtained when a is set to zero in (3.1)-(3.7). Then w and v remain uniformly 
bounded above for all t > 0. If, in addition 

u < ü and v < v in -1 < x < 1 (3.34) 

at / = 0, then (3.29) holds for all / > 0. 

Proof. According to Theorems 3.5 and 3.7, ü and v are uniformly bounded above for all 
/ > 0; then the first statement is a consequence of the second one. In order to prove the latter, 
notice that by continuity, if (3.34) holds in 0 < / < í0 then it holds also in t0 < t < t0 + e for 
some e > 0. In addition (and this completes the proof), if (3.34) holds in 0 < t < T, then it also 
holds at t = T. In order to prove that statement, let K be a common upper bound of ü and v 
in - 1 < X < 1 , 0 < t < T and apply Lemma 3.2 with U = ü - u, V = v - v and 
M= 2K- A. 

THEOREM 3.11. If a > 0 then every solution of (3.1)-(3.7) is uniformly bounded above 
in -1 < x < 1, t > 0. If, in addition, A < -(logfl)/2, then every solution of (3.1)-(3.7) 
satisfies 

u -* 0 and v -» 0 as t -*• oo, uniformly in -1 < x < 1. 

Proof. Let ü and v be as defined in Lemma 3.10. According to Theorems 3.5 and 3.7, ü and v 
are uniformly bounded above, and they converge uniformly to zero as t -* ooifA < -(logi?)/2. 
Then Lemma 3.10 yields the result. 



Standard comparison methods do not lead us any further. In order to obtain global stability 
results when 0 < a < 1 and X > -(log/?)/2 we consider coupled sub- and super-solutions of 
(3.1)-(3.3), («„,, v*) and («*, v*), that may be defined as solutions of the following system of 
equations 

"*r - u*x = "*(¿ - «* - av*)> (3-35) 

v*t + *>** = v*(k - v* - au*), (3.36) 

«,* - u* = w*(A - "* - «v*), (3.37) 

i/f* + i£ = t/*(A - v* - au,), (3.38) 

in —1 < JC < 1, / > 0, with boundary conditions 

vt = Ru*, v* = Ru* at x = - 1 , (3.39) 

M» = Rv¡, u* = Rv* a t x = l , (3.40) 

and initial conditions 

"* = «o. "* = w°, f* = y0. v* = i>° at f = 0, (3.41) 

where «0, tt°, v0 and v° are C^functions in -1 < x < 1 satisfying 

0 < u0 < u°, 0<vo<v° in -1 < x < 1, (3.42) 

v0 = Ru0, v° = Ru°, (3.43) 

dy0/dx + i? dw0/dx = R(l - fl)"o("o - «""). í3-44) 

di/Vd* + # dw°/dx = R(l - R)u°(u° - av0), (3.45) 

at x = - 1 , and 

«o = /?f0. u° = rtt>°, (3.46) 

du0/dx + R dy0/d* = /?(/? - l)v0(v0 - av°), (3.47) 

du°/dx + R dü°/d* = R(R - l)t> V - at;0) (3.48) 
at x = 1. 

The more general definition of coupled sub- and super-solutions involve inequalities instead 
of equations (3.35)-(3.40), but that generality will be unnecessary in the sequel. Our results 
below rely on the following comparison lemma. 

LEMMA 3.12. If a > 0, then: 
A. The problem (3.35)-(3.48) has a unique solution i n - l < x < l , 0 < í < o o , which is a 

e'-function of x and /, and satisfies 

0 <ui,<u*, 0<v„<v* in -1 < x< 1, t> 0. (3.49) 

Also, u* and v* are uniformly bounded in -1 < x < 1, 0 < t < °o. 

B. Let (u, v) be a solution of (3.1)-(3.7) such that 

u* < u < «*, v* < v < v* in -1 < x < 1 (3.50) 

at t = 0. Then (3.50) holds for all t > 0. 



Proof. 
A. By the argument in the proof of Theorem 3.1 we see that (3.35)-(3.48) has a unique 

solution in -1 < x < 1, 0 < t < TQ < w, that is a e'-function of x and t, and satisfies 

w* > 0, v* > 0, u* > 0 and y* > 0 in -1 < x s 1 and 0 < t < T0, 

and that either T0 = oo or 

limsuplUu^-.Ollcí/) + llM-.0llcv) + ll«*('»0llc(/) + l|f*('»Ollc(/)] = °° 

as t / r0, where / = [-1,1]. Then the proof of this part will be complete if we show that: 
(i) T0 = oo, (ü) (3.49) holds and (iii) u* and y* are uniformly bounded above in -1 < x < 1, 
0 < t < oo. In order to prove these three statements we only need to show that if ü and v are 
defined as in Lemma 3.10, then 

u* < u* < ü and y* < y* < v in -1 < x < 1 (3.51) 

if 0 < t < T0 provided that (3.5) holds at t = 0 (recall that ü and v are uniformly bounded 
above in -1 < x < 1, 0 < t<eo). But this statement is a consequence of the following two 
assertions. First, by continuity, if (3.51) holds in 0 < í < t0 < T0 then it also holds in 
t0 < t < t0 + e for some e > 0. Secondly, if (3.51) holds in 0 < t < T< T0, then it also holds 
at t = T; in order to prove that assertion, let K be a common bound of ü and v in -1 < x < 1, 
let the constant M be defined as M = (2 + a)K - A and apply Lemma 3.2 twice, with 
(U, V) = (ñ - «*, v - v*), and with (U, V) = (u* - «*, t>* - t>J. 

B. As above, if (3.50) holds at t = t0, then it also holds in t0 < t < t0 + e for some e > 0 
(continuity); and if (3.50) holds in 0 < t < t0 then it also holds at t = ¿0 [apply Lemma 3.2 
twice, with (U, V) = {u - «*, v - v,), and with (U, V) = (u* - u, v* - v)]. Thus the result 
follows. 

LEMMA 3.13. If 0 < a < 1 then every solution of (3.35)-(3.41) satisfies 

' i 

(M* - U* + V* - v*)dx~* 0 as t -» oo. (3.52) 
) - i 

If, in addition, A > -(logJ?)/2, then 

limsup I (w* + v*) dx > 0 as t -» oo. (3.53) 

Proo/. Multiply (3.35) by u;1, (3.36) by y*1, add, intégrate in -1 < x < 1 and take into 
account (3.39)-(3.40) to obtain 

— log(w*i;*) dx = 4A + 21ogfl - [u* + y* + a(u* + v*)] dx. (3.54) 

A similar procedure applied to (3.37) and (3.38) yields 

— log(u*v*)dx = 4A + 2logR - [«* + v* + a{u* + y*)] dx, (3.55) 



and, by subtracting (3.54) from (3.55) we obtain 

j log(u*v*/u*v*)dx = -(1 - a) [(u* - «*) + (v* - v*)] dx. (3.56) 

Now, since the right hand side of (3.56) is strictly negative (Lemma 3.12A), the function 
t ~* fí-i \og(u*v*/uítv*) dx (>0 for all t > 0) is strictly decreasing and bounded below; then it 
is convergent and 

[(«* - uj + (v* - vj] dxdt < oo. (3.57) 
Jo J - l 

On the other hand, when (3.35) and (3.36) are subtracted from (3.37) and (3.38) respectively, 
the resulting equations are added and integrated in -1 < x < 1, and the result in Lemma 3.12A 
is taken into account it is seen that 

^ r [ ( « * - « • ) + o > * - «>*)] < K for all t > 0, (3.58) 

where K is a certain constant. Since í_i [ ( «* -« , ) + (f* - y*)] dx > 0 for all t > 0 (Lemma 
3.2A), equations (3.57) and (3.58) readily imply that (3.52) holds. 

Finally, in order to obtain (3.53) assume for contradiction that 

i 
(«* + v*) dx -» 0 as t -»• oo. 

Then from (3.52) and (3.54) we obtain 

— log(«* v*) dx -» 4A + 2 log R > 0, 

and 

(«* + y») dx > [log M* - 1 + log t>* - 1] dx -> oo as t -> oo. 
-i J - i 

Thus the required contradiction is obtained and the proof is complete. 

We now may prove the main result in this section: if 0 < a < 1 and A > -(log/?)/2 then 
(3.1)-(3.3) has a unique steady state that is globally asymptotically stable (with the sup norm). 

THEOREM 3.14. If 0 < a < 1 and X > -(log/?)/2, then (3.1)-(3.3) has a unique steady state, 
(ws, vs), such that 

us > 0 and vs > 0 in -1 < x < 1, (3.59) 

and every solution of (3.1)-(3.7) satisfies 

u -> us and v -» ys uniformly in -1 < x < 1, as t -* oo. 



Proof. Let (w, v) be any solution of (3.1)-(3.7), and let u0, u0, u° and v° be C'-functions of 
[-1,1] into IR satisfying (3.42)-(3.48) and 

M 0 < M ( - , 0 < " ° , V0 < v(-J)< v° in -1 < x < 1, 0 < t < 2. 

Then the solution of (3.35)-(3.41) is such that 

u*(x, t) < u(x, t + T) < u*(x, t), v*(x, t) < v(x, t + T) < v*(x, t) (3.60) 

i f - l < j t < l , 0 < f < o o and 0 < T < 2, as seen when applying Lemma 3.12B to the solution 
of (3.1)-(3.7)(w, v), whereü(x, t) = u(x, t + T)andü(x, 0 = v{x, t + T). The proof proceeds in 
two steps. 

Step 1. 
u -* us and v -> vs in LjQ-1, 1[) as t -» oo, (3.61) 

where (ws, vs) is a steady state of (3.1)-(3.3) satisfying (3.59). 
Let us consider the functions U and V defined as 

Í
í+i rt+i 

u(x, a) da, V(x, 0 = 1 v(x, o) do, 
that satisfy [see (3.60)] 

« * < £ / < « * and v* < V < v* in -1 < x < 1, 0 < t < oo. (3.62) 

Then \U - u\ and | V - v\ are bounded by u* - w* and y* - v* in -1 < x < 1, 0 < t < oo. 
Since, in addition, \Ut(x, t)\ = \u(x, t + 1) - W(JC, t)\ and |Kf(x, í)l = \v(x, t + 1) - Ü(X, Ol 
are also bounded by (u* - M*) and (v* - u*) respectively, we have 

[ / - « - • 0, K - t ; - > 0 , (3.63) 

í/r -» 0, Kr -* 0, (3.64) 

in Li(]-1, 1[) as t ->• oo, as obtained by applying Lemma 3.13. Also [see (3.57)] 

í f (\Ut(x,t)\ + \Vt(x,t)\)dxdt<oo, 

and this implies that 

(| U(pc, t + a)- U(x, Ol + I V(x, t + o)- V(x, t)\) dx - 0, 

uniformly in 0 < <J < oo, as í -> oo; as a consequence 

U-+us and K-»», inL^J-1,11) t -* oo. (3.65) 

Also, it follows from (3.63) and (3.65) that u -> us and v -• t;s in L^J- l , 1[) as í -» oo, and the 
same is true for u*, «* and v*, v* respectively (see Lemma 3.13), and using the functions ü and 
v, defined as 

ü(x, t) = u(x, t - x + 1) and v{x, t) ~ v(x, t + x + 1), (3.66) 



if -1 < x < 1 and / > O, it is readily seen from (3.60) that ü -* us and v -> vs in ¿ i ( ] - l , 1[) as 
t -» oo. Apply now the argument at the end of Step 2 of the proof of Theorem 3.5 to obtain that 
« -* us and v -» ys uniformly in -1 < x ^ 1 as / -» oo; («s, ys) is a classical solution of 
(2.1)-(2.3). Finally, when taking into account (3.66) we can conclude that u -» us and v -* vs 

uniformly i n - l < J c ^ l a s f - > < » , and the proof of the step is complete. 

Step 2. (3.1)-(3.3) possess at most one steady state satisfying (3.59). 
Assume for contradiction that two such steady states, (u¡, v¡) and (u2, v¿), exist. If the initial 

conditions for (3.35)-(3.40) are taken such that 

u0 < w* < w° and v0 < v* < v° in -1 < x < 1, for k = 1 and 2, 

then, according to Lemma 3.12A, we have 

u* < u* < u* and u* < v* < v* in -1 < x < 1, O < t < oo 

for /: = 1 and 2, and (3.52) implies that 

{\u]-u2
s\ + |üf

1-i;,2 |)dx = 0. 

Then wj s «j and v, s vj the required contradiction is obtained and the step and the proof of 
the theorem are complete. 

REMARK 3.15. Numerical results [30] suggest that the conclusión in Theorem 3.14 remains true 
if either (i) a = 1 and X > -(log R)/2 or (ii) a > 1 and -(log R)/2 < X < Ac for some constant 
Xc. Nevertheless, this result cannot be obtained with the ideas in this section because, if a > 1 
then the quantity 

I \o%(u*v*/u*vjf)áx 

does not converge to zero as t -*• oo [see (3.56)]. 

4. CONCLUDING REMARKS 

We have proven the results described at the end of Section 1. Three remarks concerning these 
results and their extensions are in order: 

(a) If the initial conditions u0 and v0 are allowed to vanish, then the dynamics of (1.1)—(1.3) 
become quite complex [30]. That complexity is due to the fact that the number of zeroes of u 
and v remains constant as t increases (the zeroes propágate along the characteristics), and is 
nongeneric (see [30]) and spurious because the second spatial derivatives in (1.12)—(1.13), that 
have been neglected, do not allow zeroes of \A\2 and \B\2 to remain as time proceeds. 

(b) Notice that we have paid only small attention to the case a = -1 [we only obtained the 
results (iv) and (v) at the end of Section 1, whose proof was very simple]. The reason is that 
equations (3.1)-(3.3) are not a good approximation of the amplitude equations (1.12)—(1.13) in 
this critical case, when higher order nonlinear (quintic,...) terms cannot be neglected. 

(c) If a > 1 and X > -Qog R)/2 then our only conclusión is that in (vii), and the ideas in this 
paper do not allow to obtain further results concerning the asymptotic behavior as / -» oo 
(Remark 3.15). An analysis of the dynamics of (1.1)-(1.7) in that case is presented in [30], by 



means of continuation methods and typical dynamical systems techniques. Those results show 
that the conclusión (vi) is no longer true if a > 1, when for appropriate valúes of A, (1.1)—(1.7) 
exhibits quite complex dynamics as t -»• <x>; including periodic and quasi-periodic behaviors, 
intermittency, period-doubling sequences and crises (i.e. chaotic collisions of nonchaotic 
attractors) associated with symmetry gaining from nonsymmetric limit cycles (the underlying 
symmetry being given by the map A «-* B and x -> -x). 
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