23 research outputs found

    Protocol of a randomised trial of teriparatide followed by zoledronic acid to reduce fracture risk in adults with osteogenesis imperfecta

    Get PDF
    Introduction: Osteogenesis imperfecta (OI) is a rare genetic disease associated with multiple fractures throughout life. It is often treated with osteoporosis medications but their effectiveness at preventing fractures is unknown. The Treatment of Osteogenesis Imperfecta with Parathyroid Hormone and Zoledronic Acid trial will determine if therapy with teriparatide (TPTD) followed by zoledronic acid (ZA) can reduce the risk of clinical fractures in OI. Methods and analysis: Individuals aged ≥18 years with a clinical diagnosis of OI are eligible to take part. At baseline, participants will undergo a spine X-ray, and have bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) at the spine and hip. Information on previous fractures and previous bone targeted treatments will be collected. Questionnaires will be completed to assess pain and other aspects of health-related quality of life (HRQoL). Participants will be randomised to receive a 2-year course of TPTD injections 20 µg daily followed by a single intravenous infusion of 5 mg ZA, or to receive standard care, which will exclude the use of bone anabolic drugs. Participants will be followed up annually, have a repeat DXA at 2 years and at the end of study. Spine X-rays will be repeated at the end of study. The duration of follow-up will range between 2 and 8 years. The primary endpoint will be new clinical fractures confirmed by X-ray or other imaging. Secondary endpoints will include participant reported fractures, BMD and changes in pain and HRQoL. Ethics and dissemination: The study received ethical approval in December 2016. Following completion of the trial, a manuscript will be submitted to a peer-reviewed journal. The results will inform clinical practice by determining if TPTD/ZA can reduce the risk of fractures in OI compared with standard care. Trial registration number: ISRCTN15313991

    The frequency of transforming growth factor-TGF-B gene polymorphisms in a normal southern Iranian population

    Get PDF
    Several single nucleotide polymorphisms (SNPs) of the transforming growth factor-β1 gene (TGFB1) have been reported. Determination of TGFB1 SNPs allele frequencies in different ethnic groups is useful for both population genetic analyses and association studies with immunological diseases. In this study, five SNPs of TGFB1 were determined in 325 individuals from a normal southern Iranian population using polymerase chain reaction-restriction fragment length polymorphism method. This population was in Hardy-Weinberg equilibrium for these SNPs. Of the 12 constructed haplotypes, GTCGC and GCTGC were the most frequent in the normal southern Iranian population. Comparison of genotype and allele frequencies of TGFB SNPs between Iranian and other populations (meta-analysis) showed significant differences, and in this case the southern Iranian population seems genetically similar to Caucasoid populations. However, neighbour-joining tree using Nei's genetic distances based on TGF-β1 allele frequencies showed that southern Iranians are genetically far from people from the USA, Germany, UK, Denmark and the Czech Republic. In conclusion, this is the first report of the distribution of TGFB1 SNPs in an Iranian population and the results of this investigation may provide useful information for both population genetic and disease studies. © 2008 The Authors

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    Skeletal responses to romosozumab after 12 months of denosumab

    Full text link
    peer reviewedRomosozumab, a monoclonal anti-sclerostin antibody that has the dual effect of increasing bone formation and decreasing bone resorption, reduces fracture risk within 12 months. In a post hoc, exploratory analysis, we evaluated the effects of romosozumab after 12 months of denosumab in postmenopausal women with low bone mass who had not received previous osteoporosis therapy. This phase 2 trial (NCT00896532) enrolled postmenopausal women with a lumbar spine, total hip, or femoral neck T-score ≤ 2.0 and ≥ 3.5. Individuals were randomized to placebo or various romosozumab dosing regimens from baseline to month 24, were rerandomized to 12 months of denosumab or placebo (months 24–36), and then all received romosozumab 210 mg monthly for 12 months (months 36–48). Results for the overall population have been previously published. Here, we present results for changes in bone mineral density (BMD) and levels of procollagen type I N-terminal propeptide (P1NP) and β-isomer of the C-terminal telopeptide of type I collagen (β-CTX) from a subset of women who were randomized to placebo for 24 months, were re-randomized to receive denosumab (n= 16) or placebo (n =12) for 12 months, and then received romosozumab for 12 months. In women who were randomized to placebo followed by denosumab, romosozumab treatment for 12 months maintained BMD gained during denosumab treatment at the total hip (mean change from end of denosumab treatment of 0.9%) and further increased BMD gains at the lumbar spine (mean change from end of denosumab treatment of 5.3%). Upon transition to romosozumab (months 36–48), P1NP and β-CTX levels gradually returned to baseline from their reduced values during denosumab administration. Transitioning to romosozumab after 12 months of denosumab appears to improve lumbar spine BMD and maintain total hip BMD while possibly preventing the rapid increase in levels of bone turnover markers above baseline expected upon denosumab discontinuation. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research

    A single dose of zoledronate preserves bone mineral density for up to 2 years after a second course of romosozumab

    Get PDF
    Summary: This phase 2 study evaluated the efficacy and safety of transitioning to zoledronate following romosozumab treatment in postmenopausal women with low bone mass. A single dose of 5 mg zoledronate generally maintained the robust BMD gains accrued with romosozumab treatment and was well tolerated. Introduction: Follow-on therapy with an antiresorptive agent is necessary to maintain the skeletal benefits of romosozumab therapy. We evaluated the use of zoledronate following romosozumab treatment. Methods: This phase 2, dose-finding study enrolled postmenopausal women with low bone mineral density (BMD). Subjects who received various romosozumab doses or placebo from months 0–24 were rerandomized to denosumab (60 mg SC Q6M) or placebo for 12 months, followed by open-label romosozumab (210 mg QM) for 12 months. At month 48, subjects who had received active treatment for 48 months were assigned to no further active treatment and all other subjects were assigned to zoledronate 5 mg IV. Efficacy (BMD, P1NP, and β-CTX) and safety were evaluated for 24 months, up to month 72. Results: A total of 141 subjects entered the month 48–72 period, with 51 in the no further active treatment group and 90 in the zoledronate group. In subjects receiving no further active treatment, lumbar spine (LS) BMD decreased by 10.8% from months 48–72 but remained 4.2% above the original baseline. In subjects receiving zoledronate, LS BMD was maintained (percentage changes: − 0.8% from months 48–72; 12.8% from months 0–72). Similar patterns were observed for proximal femur BMD in both groups.With no further active treatment, P1NP and β-CTX decreased but remained above baseline at month 72. Following zoledronate, P1NP and β-CTX levels initially decreased but approached baseline by month 72. No new safety signals were observed. Conclusion: A zoledronate follow-on regimen can maintain robust BMD gains achieved with romosozumab treatment
    corecore