686 research outputs found
Spectra of magnetic perturbations triggered by pellets in JET plasmas
Aiming at investigating edge localised mode (ELM) pacing for future application on ITER, experiments have been conducted on JET injecting pellets in different plasma configurations, including high confinement regimes with type-I and type-III ELMs, low confinement regimes and Ohmically heated plasmas. The magnetic perturbations spectra and the toroidal mode number, n, of triggered events are compared with those of spontaneous ELMs using a wavelet analysis to provide good time resolution of short-lived coherent modes. It is found that—in all these configurations—triggered events have a coherent mode structure, indicating that pellets can trigger an MHD event basically in every background plasma. Two components have been found in the magnetic perturbations induced by pellets, with distinct frequencies and toroidal mode numbers. In high confinement regimes triggered events have similarities with spontaneous ELMs: both are seen to start from low toroidal mode numbers, then the maximum measured n increases up to about 10 within 0.3 ms before the ELM burst
An explicit height bound for the classical modular polynomial
For a prime m, let Phi_m be the classical modular polynomial, and let
h(Phi_m) denote its logarithmic height. By specializing a theorem of Cohen, we
prove that h(Phi_m) <= 6 m log m + 16 m + 14 sqrt m log m. As a corollary, we
find that h(Phi_m) <= 6 m log m + 18 m also holds. A table of h(Phi_m) values
is provided for m <= 3607.Comment: Minor correction to the constants in Theorem 1 and Corollary 9. To
appear in the Ramanujan Journal. 17 pages
Wave Propagation in Gravitational Systems: Late Time Behavior
It is well-known that the dominant late time behavior of waves propagating on
a Schwarzschild spacetime is a power-law tail; tails for other spacetimes have
also been studied. This paper presents a systematic treatment of the tail
phenomenon for a broad class of models via a Green's function formalism and
establishes the following. (i) The tail is governed by a cut of the frequency
Green's function along the ~Im~ axis,
generalizing the Schwarzschild result. (ii) The dependence of the cut
is determined by the asymptotic but not the local structure of space. In
particular it is independent of the presence of a horizon, and has the same
form for the case of a star as well. (iii) Depending on the spatial
asymptotics, the late time decay is not necessarily a power law in time. The
Schwarzschild case with a power-law tail is exceptional among the class of the
potentials having a logarithmic spatial dependence. (iv) Both the amplitude and
the time dependence of the tail for a broad class of models are obtained
analytically. (v) The analytical results are in perfect agreement with
numerical calculations
Exactly solvable path integral for open cavities in terms of quasinormal modes
We evaluate the finite-temperature Euclidean phase-space path integral for
the generating functional of a scalar field inside a leaky cavity. Provided the
source is confined to the cavity, one can first of all integrate out the fields
on the outside to obtain an effective action for the cavity alone.
Subsequently, one uses an expansion of the cavity field in terms of its
quasinormal modes (QNMs)-the exact, exponentially damped eigenstates of the
classical evolution operator, which previously have been shown to be complete
for a large class of models. Dissipation causes the effective cavity action to
be nondiagonal in the QNM basis. The inversion of this action matrix inherent
in the Gaussian path integral to obtain the generating functional is therefore
nontrivial, but can be accomplished by invoking a novel QNM sum rule. The
results are consistent with those obtained previously using canonical
quantization.Comment: REVTeX, 26 pages, submitted to Phys. Rev.
Gamma-ray Observations Under Bright Moonlight with VERITAS
Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive
photomultiplier tube (PMT) cameras. Exposure to high levels of background
illumination degrades the efficiency of and potentially destroys these
photo-detectors over time, so IACTs cannot be operated in the same
configuration in the presence of bright moonlight as under dark skies. Since
September 2012, observations have been carried out with the VERITAS IACTs under
bright moonlight (defined as about three times the night-sky-background (NSB)
of a dark extragalactic field, typically occurring when Moon illumination >
35%) in two observing modes, firstly by reducing the voltage applied to the
PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to
the cameras. This has allowed observations at up to about 30 times previous NSB
levels (around 80% Moon illumination), resulting in 30% more observing time
between the two modes over the course of a year. These additional observations
have already allowed for the detection of a flare from the 1ES 1727+502 and for
an observing program targeting a measurement of the cosmic-ray positron
fraction. We provide details of these new observing modes and their performance
relative to the standard VERITAS observations
The First VERITAS Telescope
The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic
Radiation Imaging Telescope Array System) has been in operation since February
2005. We present here a technical description of the instrument and a summary
of its performance. The calibration methods are described, along with the
results of Monte Carlo simulations of the telescope and comparisons between
real and simulated data. The analysis of TeV -ray observations of the
Crab Nebula, including the reconstructed energy spectrum, is shown to give
results consistent with earlier measurements. The telescope is operating as
expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic
An innovative approach for DEMO core fuelling by inboard injection of high-speed pellets
Core fuelling of DEMO tokamak fusion reactor is under investigation within the EUROfusion Work Package “Tritium, Fuelling and Vacuum”. An extensive analysis of fuelling requirements and technologies, suggests that pellet injection still represents, to date, the most realistic option. Modelling of both pellet penetration and fuel deposition profiles for different injection locations, assuming a specific plasma reference scenario and the ITER reference pellet mass (6 × 1021 atoms), indicates that: 1) Low Field Side (LFS) injection is inadequate; 2) Vertical injection may be effective only provided that pellets are injected at ∼ 10 km/s from a radial position ≤∼8 m; 3) effective core fuelling can be achieved launching pellets from the High Field Side (HFS) at ∼1 km/s. HFS injection was therefore selected as the reference scheme, though scenarios featuring less steep density and temperature gradients at the plasma edge could induce to reconsider vertical injection at speeds in the range of 4–5 km/s. To deliver intact pellets at 1 km/s from the HFS, the use of guide tubes with a bend radius ≥6 m is envisaged. The results of above simulations rely on the hypothesis that pellets are delivered at the plasma edge with the desired mass and speed. However, mass erosion and fracturing of pellets inside the guide tube (severely limiting the transfer speed), as well as pressure build up and speed losses at relevant injection rates, might hamper the use of curved guide tubes. An additional innovative approach, aimed at identifying inboard straight “free flight” injection paths, to inject pellets from the HFS at significantly higher speeds, is proposed and discussed as a backup solution. Outboard high-speed injection is still being considered, instead, for JT-60SA
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
The global build-up to intrinsic ELM bursts and comparison with pellet triggered ELMs seen in JET
We focus on JET plasmas in which ELMs are triggered by pellets in the presence of ELMs
which occur naturally. We perform direct time domain analysis of signals from fast radial
field coils and toroidal full flux azimuthal loops. These toroidally integrating signals provide
simultaneous high time resolution measurements of global plasma dynamics and its coupling
to the control system. We examine the time dynamics of these signals in plasmas where pellet
injection is used to trigger ELMs in the presence of naturally occurring ELMs. Pellets whose
size and speed are intended to provide maximum local perturbation for ELM triggering are
launched at pre-programmed times, without correlation to the occurrence times of intrinsic
ELMs. Pellet rates were sufficiently low to prevent sustained changes of the underlying
plasma conditions and natural ELM behaviour. We find a global signature of the build-up to
natural ELMs in the temporal analytic phase of both the full flux loops and fast radial field
coil signals. Before a natural ELM, the signal phases align to the same value on a ∼2–5ms
timescale. This global build up to a natural ELM occurs whilst the amplitude of the full flux
loop and fast radial field coil signals are at their background value: it precedes the response
seen in these signals to the onset of ELMing. In contrast these signals do not clearly phase
align before the ELM for ELMs which are the first to occur following pellet injection. This
provides a direct test that can distinguish when an ELM is triggered by a pellet as opposed to
occurring naturally. It further supports the idea [1–4] of a global build up phase that precedes
natural ELMs; pellets can trigger ELMs even when the signal phase is at a value when a
natural ELM is unlikely to occurEURATOM 633053ONR NICOP N62909-15-1-N14
Comparing spontaneous and pellet-triggered ELMs via non-linear extended MHD simulations
Injecting frozen deuterium pellets into an ELMy H-mode plasma is a well established scheme for triggering edge localized modes (ELMs) before they naturally occur. This paper presents non-linear simulations of spontaneous type-I ELMs and pellet-triggered ELMs in ASDEX Upgrade performed with the extended MHD code JOREK. A thorough comparison of the non-linear dynamics of these events is provided. In particular, pellet-triggered ELMs are simulated by injecting deuterium pellets into different time points during the pedestal build-up described in A Cathey et al (2020 Nuclear Fusion 60 124007). Realistic ExB and diamagnetic background plasma flows as well as the time dependent bootstrap current evolution are included during the build-up to accurately capture the balance between stabilising and destabilising terms for the edge instabilities. Dependencies on the pellet size and injection times are studied. The spatio-temporal structures of the modes and the resulting divertor heat fluxes are compared in detail between spontaneous and triggered ELMs. We observe that the premature excitation of ELMs by means of pellet injection is caused by a helical perturbation described by a toroidal mode number of n=1. In accordance with experimental observations, the pellet-triggered ELMs show reduced thermal energy losses and a narrower divertor wetted area with respect to spontaneous ELMs. The peak divertor energy fluence is seen to decrease when ELMs are triggered by pellets injected earlier during the pedestal build-up.</p
- …
