287 research outputs found
Attack of \u3ci\u3eUrophora Quadrifasciata\u3c/i\u3e (Meig.) (Diiptera: Tephritidae) A Biological Control Agent for Spotted Knapweed (\u3ci\u3eCentaurea Maculosa\u3c/i\u3e Lamarck) and Diffuse Knapweed (\u3ci\u3eC. Diffusa\u3c/i\u3e Lamarck) (Asteraceae) by a Parasitoid, \u3ci\u3ePteromalus\u3c/i\u3e Sp. (Hymenoptera: Pteromalidae) in Michigan
Urophora quadrifasciata (Meig.) a seedhead fly released in North America for biological control of Centaurea maculosa and C. diffusa is parasitized by a Pteromalus sp. Parasitism up to 60% of U. quadrifasciata was found in samples of seed heads of C. maculosa and C. diffusa collected from 54 of the 59 counties sampled in Michigan and in one sample of C. maculosa seed heads from Hennepin County, Minnesota. Parasitism of U. quadrifasciata has rarely been reported
Implementing Risk Management Decisions that Optimize Nutrient Value of Dairy Manure while Minimizing Related Risk
Nutrients present in manure are increasingly receiving attention for environmental, production, and financial reasons. Dairy producers continue to strive for better ways and educational opportunities to improve profits by evaluating fertilizer and value of manure to their operation and to protect the environment. These farming decisions which help producers stay economically viable also support and stimulate their local economy, which promotes a more vital rural community. Utilizing 22 dairy nutrient management surveys, 14 on-farm workshops, 10 small group on-farm assessment workshops, one video, and individual producer visits, producers were able to make informed decisions using tools and knowledge gained to control risks associated with manure nutrients during handling, storage, and application
Herschel observations of interstellar chloronium
Using the Herschel Space Observatory's Heterodyne Instrument for the
Far-Infrared (HIFI), we have observed para-chloronium (H2Cl+) toward six
sources in the Galaxy. We detected interstellar chloronium absorption in
foreground molecular clouds along the sight-lines to the bright submillimeter
continuum sources Sgr A (+50 km/s cloud) and W31C. Both the para-H2-35Cl+ and
para-H2-37Cl+ isotopologues were detected, through observations of their
1(11)-0(00) transitions at rest frequencies of 485.42 and 484.23 GHz,
respectively. For an assumed ortho-to-para ratio of 3, the observed optical
depths imply that chloronium accounts for ~ 4 - 12% of chlorine nuclei in the
gas phase. We detected interstellar chloronium emission from two sources in the
Orion Molecular Cloud 1: the Orion Bar photodissociation region and the Orion
South condensation. For an assumed ortho-to-para ratio of 3 for chloronium, the
observed emission line fluxes imply total beam-averaged column densities of ~
2.0E+13 cm-2 and ~ 1.2E+13 cm-2, respectively, for chloronium in these two
sources. We obtained upper limits on the para-H2-35Cl+ line strengths toward H2
Peak 1 in the Orion Molecular cloud and toward the massive young star AFGL
2591. The chloronium abundances inferred in this study are typically at least a
factor ~10 larger than the predictions of steady-state theoretical models for
the chemistry of interstellar molecules containing chlorine. Several
explanations for this discrepancy were investigated, but none has proven
satisfactory, and thus the large observed abundances of chloronium remain
puzzling.Comment: Accepted for publication in the Astrophysical Journa
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Recommended from our members
Hospital Readmissions Among Persons With Human Immunodeficiency Virus in the United States and Canada, 2005–2018: A Collaboration of Cohort Studies
BackgroundHospital readmission trends for persons with human immunodeficiency virus (PWH) in North America in the context of policy changes, improved antiretroviral therapy (ART), and aging are not well-known. We examined readmissions during 2005-2018 among adult PWH in NA-ACCORD.MethodsLinear risk regression estimated calendar trends in 30-day readmissions, adjusted for demographics, CD4 count, AIDS history, virologic suppression (<400 copies/mL), and cohort.ResultsWe examined 20 189 hospitalizations among 8823 PWH (73% cisgender men, 38% White, 38% Black). PWH hospitalized in 2018 versus 2005 had higher median age (54 vs 44 years), CD4 count (469 vs 274 cells/μL), and virologic suppression (83% vs 49%). Unadjusted 30-day readmissions decreased from 20.1% (95% confidence interval [CI], 17.9%-22.3%) in 2005 to 16.3% (95% CI, 14.1%-18.5%) in 2018. Absolute annual trends were -0.34% (95% CI, -.48% to -.19%) in unadjusted and -0.19% (95% CI, -.35% to -.02%) in adjusted analyses. By index hospitalization reason, there were significant adjusted decreases only for cardiovascular and psychiatric hospitalizations. Readmission reason was most frequently in the same diagnostic category as the index hospitalization.ConclusionsReadmissions decreased over 2005-2018 but remained higher than the general population's. Significant decreases after adjusting for CD4 count and virologic suppression suggest that factors alongside improved ART contributed to lower readmissions. Efforts are needed to further prevent readmissions in PWH
- …