65 research outputs found

    Tuning of the Rashba effect in Pb quantum well states via a variable Schottky barrier

    Get PDF
    Spin-orbit interaction (SOI) in low-dimensional systems results in the fascinating property of spin-momentum locking. In a Rashba system the inversion symmetry normal to the plane of a two-dimensional (2D) electron gas is broken, generating a Fermi surface spin texture reminiscent of spin vortices of different radii. This can be exploited in a spin-based field-effect transistor (spin- FET), where the Rashba system forms a 2D channel between ferromagnetic (FM) source and drain electrodes. The electron spin precesses when propagating through the Rashba channel and spin orientations (anti)parallel to the drain give (low) high conductivity. Crucial is the possibility to tune the momentum splitting, and consequently the precession angle, through an external parameter. Here we show that this can be achieved in Pb quantum well states through the doping dependence of the Schottky barrier, opening up the possibility of a terahertz spin-FET.Comment: 8 pages, 7 figure

    Interatomic potentials for the vibrational properties of III-V semiconductor nanostructures

    Full text link
    We derive interatomic potentials for zinc blende InAs, InP, GaAs and GaP semiconductors with possible applications in the realm of nanostructures. The potentials include bond stretching interaction between the nearest and next-nearest neighbors, a three body term and a long-range Coulomb interaction. The optimized potential parameters are obtained by (i) fitting to bulk phonon dispersions and elastic properties and (ii) constraining the parameter space to deliver well behaved potentials for the structural relaxation and vibrational properties of nanostructure clusters. The targets are thereby calculated by density functional theory for clusters of up to 633 atoms. We illustrate the new capability by the calculation Kleinman and Gr\"uneisen parameters and of the vibrational properties of nanostructures with 3 to 5.5 nm diameter.Comment: 22 pages, 5 figures; Phys. Rev. B 201

    Carrier relaxation mechanisms in self-assembled (In,Ga)As/GaAs quantum dots: Efficient P -> S Auger relaxation of electrons

    Full text link
    We calculate the P-shell--to-S-shell decay lifetime \tau(P->S) of electrons in lens-shaped self-assembled (In,Ga)As/GaAs dots due to Auger electron-hole scattering within an atomistic pseudopotential-based approach. We find that this relaxation mechanism leads to fast decay of \tau(P->S)~1-7 ps for dots of different sizes. Our calculated Auger-type P-shell--to-S-shell decay lifetimes \tau(P->S) compare well to data in (In,Ga)As/GaAs dots, showing that as long as holes are present there is no need for an alternative polaron mechanism.Comment: Version published in Phys. Rev.

    Response of the topological surface state to surface disorder in TlBiSe2_2

    Get PDF
    Through a combination of experimental techniques we show that the topmost layer of the topo- logical insulator TlBiSe2_2 as prepared by cleavage is formed by irregularly shaped Tl islands at cryogenic temperatures and by mobile Tl atoms at room temperature. No trivial surface states are observed in photoemission at low temperatures, which suggests that these islands can not be re- garded as a clear surface termination. The topological surface state is, however, clearly resolved in photoemission experiments. This is interpreted as a direct evidence of its topological self-protection and shows the robust nature of the Dirac cone like surface state. Our results can also help explain the apparent mass acquisition in S-doped TlBiSe2_2.Comment: 16 pages, 5 figure

    Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    Full text link
    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface band-gap these states develop spin textures similar to the topological surface states well-before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise and are suggestive for future realizing Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of topological quantum criticality.Comment: 20 pages, 5 Figures, Related papers at http://physics.princeton.edu/zahidhasangroup/index.html, Accepted for publication in Nature Commun.(2015

    ISO continuum observations of quasars at z=1-4 I.Spectral energy distributions of quasars from the UV to far-infrared

    Get PDF
    Eight luminous quasars with 30<MB<27 -30 < M_B < -27 at z = 1.4 - 3.7 have been observed in the mid- and far-infrared using ISO. All the quasars have been detected in the mid-infrared bands of ISOCAM, while no far-infrared detections have been made with ISOPHOT. Supplementing ISO observations with photometry in the optical and near-infrared made from the ground mostly within 17 months after the ISO observations, SEDs (Spectral Energy Distributions) from the UV to far-infrared have been obtained. SEDs (Spectral Energy Distributions) from the UV to far-infrared have been obtained while supplementing ISO observations with photometry in the optical and near-infrared made from the ground within 17 months. The SEDs are compared with the MED (Mean spectral Energy Distributions) of low-redshift quasars with 27<MB<22-27 < M_B < -22. It is shown that our far-infrared observations were limited by confusion noise due to crowded sources.Comment: 9 pages, 3 figures: accepted for publication in Astronomy and Astrophysic

    Response of Duplex Cr(N)/S and Cr(C)/S Coatings on 316L Stainless Steel to Tribocorrosion in 0.89% NaCl Solution Under Plastic Contact Conditions

    Get PDF
    This is the peer reviewed version of the following article: Sun Y, Dearnley PA, Mallia B. 2016. Response of duplex Cr(N)/S and Cr(C)/S coatings on 316L stainless steel to tribocorrosion in 0.89% NaCl solution under plastic contact conditions. J Biomed Mater Res Part B 2016:00B:000–000, which has been published in final form at [10.1002/jbm.b.33690. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Two duplex coatings, Cr(N)/S and Cr(C)/S, were deposited on 316L stainless steel by magnetron sputtering. The effectiveness of these duplex coatings in improving the tribocorrosion behaviour of medical alloys under elastic contact conditions has been demonstrated in a recent publication. The present work focused on the response of these duplex coatings to tribocorrosion under plastic contact conditions. Tribocorrosion tests were conducted in 0.89 % NaCl solution at 37oC at an initial contact pressure of 740 MPa and under unidirectional sliding conditions for sliding duration up to 24 h. The results showed that during sliding in the corrosive solution, the duplex coatings were plastically deformed into the substrate to a depth about 1 m. The Cr(C)/S duplex coating had sufficient ductility to accommodate the deformation without cracking, such that it was worn through gradually, leading to the gradual increase in open circuit potential (OCP) and coefficient of friction (COF). On the other hand, the Cr(N)/S duplex coating suffered from cracking at all tested potentials, leading to coating blistering after prolonged sliding at OCP and stable pit formation in the substrate beneath the coating at applied anodic potentials
    corecore