29 research outputs found

    Muscle miRNAs are influenced by sex at baseline and in response to exercise

    Get PDF
    Background: Sex differences in microRNA (miRNA) expression profiles have been found across multiple tissues. Skeletal muscle is one of the most sex-biased tissues of the body. MiRNAs are necessary for development and have regulatory roles in determining skeletal muscle phenotype and have important roles in the response to exercise in muscle. Yet there is limited research into the role and regulation of miRNAs in the skeletal muscle at baseline and in response to exercise, a well-known modulator of miRNA expression. The aim of this study was to investigate the effect of sex on miRNA expression in the skeletal muscle at baseline and after an acute bout of high-intensity interval exercise. A total of 758 miRNAs were measured using Taqman®miRNA arrays in the skeletal muscle of 42 healthy participants from the Gene SMART study (23 males and 19 females of comparable fitness levels and aged 18–45 years), of which 308 were detected. MiRNAs that differed by sex at baseline and whose change in expression following high-intensity interval exercise differed between the sexes were identified using mixed linear models adjusted for BMI and Wpeak. We performed in silico analyses to identify the putative gene targets of the exercise-induced, sex-specific miRNAs and overrepresentation analyses to identify enriched biological pathways. We performed functional assays by overexpressing two sex-biased miRNAs in human primary muscle cells derived from male and female donors to understand their downstream effects on the transcriptome. Results: At baseline, 148 miRNAs were differentially expressed in the skeletal muscle between the sexes. Interaction analysis identified 111 miRNAs whose response to an acute bout of high-intensity interval exercise differed between the sexes. Sex-biased miRNA gene targets were enriched for muscle-related processes including proliferation and differentiation of muscle cells and numerous metabolic pathways, suggesting that miRNAs participate in programming sex differences in skeletal muscle function. Overexpression of sex-biased miRNA-30a and miRNA-30c resulted in profound changes in gene expression profiles that were specific to the sex of the cell donor in human primary skeletal muscle cells. Conclusions: We uncovered sex differences in the expression levels of muscle miRNAs at baseline and in response to acute high-intensity interval exercise. These miRNAs target regulatory pathways essential to skeletal muscle development and metabolism. Our findings highlight that miRNAs play an important role in programming sex differences in the skeletal muscle phenotype

    Implications of gender-affirming endocrine care for sports participation

    Get PDF
    Many transgender (trans) individuals utilize gender-affirming hormone therapy (GAHT) to promote changes in secondary sex characteristics to affirm their gender. Participation rates of trans people in sport are exceedingly low, yet given high rates of depression and increased cardiovascular risk, the potential benefits of sports participation are great. In this review, we provide an overview of the evidence surrounding the effects of GAHT on multiple performance-related phenotypes, as well as current limitations. Whilst data is clear that there are differences between males and females, there is a lack of quality evidence assessing the impact of GAHT on athletic performance. Twelve months of GAHT leads to testosterone concentrations that align with reference ranges of the affirmed gender. Feminizing GAHT in trans women increases fat mass and decreases lean mass, with opposite effects observed in trans men with masculinizing GAHT. In trans men, an increase in muscle strength and athletic performance is observed. In trans women, muscle strength is shown to decrease or not change following 12 months of GAHT. Haemoglobin, a measure of oxygen transport, changes to that of the affirmed gender within 6 months of GAHT, with very limited data to suggest possible reductions in maximal oxygen uptake as a result of feminizing GAHT. Current limitations of this field include a lack of long-term studies, adequate group comparisons and adjustment for confounding factors (e.g. height and lean body mass), and small sample sizes. There also remains limited data on endurance, cardiac or respiratory function, with further longitudinal studies on GAHT needed to address current limitations and provide more robust data to inform inclusive and fair sporting programmes, policies and guidelines

    Aerobic capacity and telomere length in human skeletal muscle and leukocytes across the lifespan

    Get PDF
    A reduction in aerobic capacity and the shortening of telomeres are hallmarks of the ageing process. We examined whether a lower aerobic capacity is associated with shorter TL in skeletal muscle and/or leukocytes, across a wide age range of individuals. We also tested whether TL in human skeletal muscle (MTL) correlates with TL in leukocytes (LTL). Eighty-two recreationally active, healthy men from the Gene SMART cohort (31.4±8.2 years; body mass index (BMI)=25.3±3.3kg/m2), and 11 community dwelling older men (74.2±7.5years-old; BMI=28.7±2.8kg/m2) participated in the study. Leukocytes and skeletal muscle samples were collected at rest. Relative telomere length (T/S ratio) was measured by RT-PCR. Associations between TL, aerobic capacity (VO2 peak and peak power) and age were assessed with robust linear models. Older age was associated with shorter LTL (45% variance explained, P<0.001), but not MTL (P= 0.7). Aerobic capacity was not associated with MTL (P=0.5), nor LTL (P=0.3). MTL and LTL were correlated across the lifespan (rs=0.26, P=0.03). In healthy individuals, age explain most of the variability of LTL and this appears to be independent of individual aerobic capacity. Individuals with longer LTL also have a longer MTL, suggesting that there might be a shared molecular mechanism regulating telomere length

    PL - 030 The effects of ACE gene polymorphisms on ACE content before and after High-Intensity Interval Exercise

    Get PDF
    Objective Angiotensin Converting Enzyme (ACE) is expressed in human skeletal muscle.&nbsp; The ACE I/D polymorphism (rs4341) has been associated with athletic performance in some studies. Studies suggested that the ACE I/D gene polymorphism is associated with ACE enzyme content in serum, however, the effect of ACE I/D on ACE protein content in human skeletal muscle in unclear. Angiotensin-converting enzyme 2 (ACE2) is a new component of the renin-angiotensin system (RAS), which is counter-regulatory to the ACE enzyme. The polymorphisms in the ACE2 gene (rs1978124 and rs2285666) have been reported to be associated with hypertension, however, their effects on ACE content in the blood and in skeletal muscle have yet to be explored. Utilising the Gene SMART cohort (n=81), we investigated whether the ACE I/D gene polymorphism (rs4341) and two ACE2 gene polymorphisms (rs1978124 and rs2285666) were associated with ACE enzyme content in the blood and skeletal muscle at baseline, and following a single session of High-Intensity Interval Exercise (HIIE). Methods ACE and ACE2 gene polymorphisms were determined using the TaqMan SNP assay (Applied Biosystems, Foster City, California, United States) by Mastercycler® ep realplex2 (Eppendorf, Hamburg, Germany), and QuantStudio™ 7 Flex Real-Time PCR System (Applied Biosystems, Foster City, California, United States). For quantitation of ACE content in the plasma, Abcam Human ELISA Kit (ab119577 –ACE (CD143)) was used (Abcam, Cambridge, United Kingdom). Western blots were used to measure ACE content in skeletal muscle. We used robust linear models adjusted for age to test the effect of the ACE I/D polymorphism on outcomes at baseline, using the MASS package in the R statistical software. p-values were adjusted for multiple comparisons using the Benjamini and Hochberg method, and all reported p-values are adjusted p-values. An adjusted p value &lt; 0.005 was considered significant. Results We found that the ACE I/D gene polymorphism was associated with ACE content in the blood (p&lt;0.005) at baseline, but not the ACE protein content in skeletal muscle at baseline. The ACE2 polymorphisms (rs1978124 and rs2285666) were not associated with ACE enzyme content in the blood or in skeletal muscle at baseline. A single session of HIIE tended (0.005 &lt; p &lt; 0.05) to increase blood ACE content immediately post exercise, while skeletal muscle ACE protein content was lower 3 hours post&nbsp; a single session of HIIE (p&lt;0.005). However, those changes were not related to ACE I/D or ACE2 polymorphisms. Conclusions The ACE I/D gene polymorphism influences ACE enzyme content in the blood but not the ACE protein content of human skeletal muscle. ACE I/D gene polymorphism does not influence the changes of ACE content after a single session of HIIE. ACE2 gene polymorphisms seem to have no effect on ACE content in the blood and skeletal muscle, before or after a session of HIIE

    Methylome and proteome integration in human skeletal muscle uncover group and individual responses to high-intensity interval training.

    Get PDF
    Exercise is a major beneficial contributor to muscle metabolism, and health benefits acquired by exercise are a result of molecular shifts occurring across multiple molecular layers (i.e., epigenome, transcriptome, and proteome). Identifying robust, across-molecular level targets associated with exercise response, at both group and individual levels, is paramount to develop health guidelines and targeted health interventions. Sixteen, apparently healthy, moderately trained (VO2 max = 51.0 ± 10.6 mL min-1  kg-1 ) males (age range = 18-45 years) from the Gene SMART (Skeletal Muscle Adaptive Responses to Training) study completed a longitudinal study composed of 12-week high-intensity interval training (HIIT) intervention. Vastus lateralis muscle biopsies were collected at baseline and after 4, 8, and 12 weeks of HIIT. DNA methylation (~850 CpG sites) and proteomic (~3000 proteins) analyses were conducted at all time points. Mixed models were applied to estimate group and individual changes, and methylome and proteome integration was conducted using a holistic multilevel approach with the mixOmics package. A total of 461 proteins significantly changed over time (at 4, 8, and 12 weeks), whilst methylome overall shifted with training only one differentially methylated position (DMP) was significant (adj.p-value 0.5, among them are two novel exercise-related proteins, LYRM7 and EPN1. Integration analysis showed bidirectional relationships between the methylome and proteome. We showed a significant influence of HIIT on the epigenome and more so on the proteome in human muscle, and uncovered groups of proteins clustering according to similar patterns across the exercise intervention. Individual responses to exercise were observed in the proteome with novel mitochondrial and metabolic proteins consistently changed across individuals. Future work is required to elucidate the role of these proteins in response to exercise

    ACE I/D gene variant predicts ACE enzyme content in blood but not the ACE, UCP2, and UCP3 protein content in human skeletal muscle in the Gene SMART study

    Get PDF
    Angiotensin-converting enzyme (ACE) is expressed in human skeletal muscle. The ACE I/D polymorphism has been associated with athletic performance in some studies. Studies have suggested that the ACE I/D gene variant is associated with ACE enzyme content in serum, and there is an interaction between ACE and uncoupling proteins 2 and 3 (UCP2 and UCP3). However, no studies have explored the effect of ACE I/D on ACE, UCP2, and UCP3 protein content in human skeletal muscle. Utilizing the Gene SMART cohort (n = 81), we investigated whether the ACE I/D gene variant is associated with ACE enzyme content in blood and ACE, UCP2, and UCP3 protein content in skeletal muscle at baseline and following a session of high-intensity interval exercise (HIIE). Using a stringent and robust statistical analyses, we found that the ACE I/D gene variant was associated with ACE enzyme content in blood (P \u3c 0.005) at baseline but not the ACE, UCP2, and UCP3 protein content in muscle at baseline. A single session of HIIE tended (0.005 \u3c P \u3c 0.05) to increase blood ACE content immediately postexercise, whereas muscle ACE protein content was lower 3 h after a single session of HIIE (P \u3c 0.005). Muscle UCP3 protein content decreased immediately after a single session of HIIE (P \u3c 0.005) and remained low 3 h postexercise. However, those changes in the muscle were not genotype dependent. In conclusion, The ACE I/D gene variant predicts ACE enzyme content in blood but not the ACE, UCP2, and UCP3 protein content of human skeletal muscle. NEW & NOTEWORTHY: This paper describes the association between ACE I/D gene variant and ACE protein content in blood and ACE, UCP2, and UCP3 protein content in skeletal muscle at baseline and after exercise in a large cohort of healthy males. Our data suggest that ACE I/D is a strong predictor of blood ACE content but not muscle ACE content

    Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle

    Get PDF
    Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse "ages" the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age-related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity

    Uncovering the effects of gender affirming hormone therapy on skeletal muscle and epigenetics: protocol for a prospective matched cohort study in transgender individuals (the GAME study)

    Get PDF
    INTRODUCTION: Gender affirming hormone therapy (GAHT) is increasingly used by transgender individuals and leads to shifts in sex hormone levels. Skeletal muscle is highly responsive to hormone activity, with limited data on the effects of GAHT on different human tissues. Here, we present the protocol for the GAME study (the effects of Gender Affirming hormone therapy on skeletal Muscle training and Epigenetics), which aims to uncover the effects of GAHT on skeletal muscle 'omic' profiles (methylomics, transcriptomics, proteomics, metabolomics) and markers of skeletal muscle health and fitness. METHODS AND ANALYSIS: This study is a prospective age-matched cohort study in transgender adults commencing GAHT (n=80) and age-matched individuals not commencing GAHT (n=80), conducted at Austin Health and Victoria University in Victoria, Australia. Assessments will take place prior to beginning GAHT and 6 and 12 months into therapies in adults commencing GAHT. Age-matched individuals will be assessed at the same time points. Assessments will be divided over three examination days, involving (1) aerobic fitness tests, (2) muscle strength assessments and (3) collection of blood and muscle samples, as well as body composition measurements. Standardised diets, fitness watches and questionnaires will be used to control for key confounders in analyses. Primary outcomes are changes in aerobic fitness and muscle strength, as well as changes in skeletal muscle DNA methylation and gene expression profiles. Secondary outcomes include changes in skeletal muscle characteristics, proteomics, body composition and blood markers. Linear mixed models will be used to assess changes in outcomes, while accounting for repeated measures within participants and adjusting for known confounders. ETHICS AND DISSEMINATION: The Austin Health Human Research Ethics Committee (HREC) and Victoria University HREC granted approval for this study (HREC/77146/Austin-2021). Findings from this project will be published in open-access, peer-reviewed journals and presented to scientific and public audiences. TRIAL REGISTRATION NUMBER: ACTRN12621001415897; Pre-results

    Meta-analysis of genome-wide DNA methylation and integrative omics of age in human skeletal muscle

    Get PDF
    International audienceBackground: Knowledge of age-related DNA methylation changes in skeletal muscle is limited, yet this tissue is severely affected by ageing in humans.Methods: We conducted a large-scale epigenome-wide association study meta-analysis of age in human skeletal muscle from 10 studies (total n = 908 muscle methylomes from men and women aged 18-89 years old). We explored the genomic context of age-related DNA methylation changes in chromatin states, CpG islands, and transcription factor binding sites and performed gene set enrichment analysis. We then integrated the DNA methylation data with known transcriptomic and proteomic age-related changes in skeletal muscle. Finally, we updated our recently developed muscle epigenetic clock (https://bioconductor.org/packages/release/bioc/html/MEAT.html).Results: We identified 6710 differentially methylated regions at a stringent false discovery rate <0.005, spanning 6367 unique genes, many of which related to skeletal muscle structure and development. We found a strong increase in DNA methylation at Polycomb target genes and bivalent chromatin domains and a concomitant decrease in DNA methylation at enhancers. Most differentially methylated genes were not altered at the mRNA or protein level, but they were nonetheless strongly enriched for genes showing age-related differential mRNA and protein expression. After adding a substantial number of samples from five datasets (+371), the updated version of the muscle clock (MEAT 2.0, total n = 1053 samples) performed similarly to the original version of the muscle clock (median of 4.4 vs. 4.6 years in age prediction error), suggesting that the original version of the muscle clock was very accurate.Conclusions: We provide here the most comprehensive picture of DNA methylation ageing in human skeletal muscle and reveal widespread alterations of genes involved in skeletal muscle structure, development, and differentiation. We have made our results available as an open-access, user-friendly, web-based tool called MetaMeth (https://sarah-voisin.shinyapps.io/MetaMeth/)
    corecore