62 research outputs found

    The geometry of spatial analyses: Implications for conservation biologists

    Get PDF
    Most conservation biology is about the management of space and therefore requires spatial analyses. However, recent debates in the literature have focused on a limited range of issues related to spatial analyses that are not always of primary interest to conservation biologists, especially autocorrelation and spatial confounding. Explanations of how these analyses work, and what they do, are permeated with mathematical formulas and statistical concepts that are outside the experience of most working conservationists. Here, we describe the concepts behind these analyses using simple simulations to exemplify their main goals, functions and assumptions, and graphically illustrate how processes combine to generate common spatial patterns. Understanding these concepts will allow conservation biologists to make better decisions about the analyses most appropriate for their problems. © 2011 ABECO

    Riqueza e Distribuição de Espécies de Borrachudos (Diptera: Simuliidae) na Região da Chapada Diamantina, BA

    Get PDF
    Taxonomically, blackflies (Simuliidae) are among the best-known aquatic insects in Brazil. However, information on their distribution is lacking for many regions. We sampled simuliids in 50 streams in the Chapada Diamantina region, State of Bahia, located in three distinct geographical areas, 20 at Lençóis, 18 at Mucugê, and 12 at Rio de Contas. We analyzed simuliid species richness and distribution in the Chapada Diamantina area as a whole, as well as in each of the three distinct geographical areas. We collected 20 species, three of which were not yet described and two were described after our sampling. The three areas are distinct in relation to environmental variables, mainly owing to differences in altitude and water pH. Four species were restricted to Rio de Contas, while four other species were restricted to Mucugê. Sixteen species were present in Mucugê and fifteen in Rio de Contas. Only twelve species were present in Lençóis, despite the higher sampling effort. Rio de Contas appears to be the area that harbors the highest species richness. Species richness was related to environmental factors only when evaluated on a small spatial scale (i.e. when each area was analyzed separately). Although we have not tested for causal relationships, our findings agree with other studies that showed that pH and altitude are important factors with which species richness and species distribution appear to be associated

    O Vão do Paranã (GO) como área chave para conservação de macroinvertebrados bentônicos

    Get PDF
    Foi feita uma indicação de área prioritária para conservação da biota de invertebrados aquáticos na bacia hidrográfica do rio Paranã-GO, utilizando a comunidade de macroinvertebrados bentônicos como ferramenta de bioindicação. Os invertebrados foram coletados pela metodologia de avaliação rápida, utilizando redes manuais de abertura de malha de 2 mm durante 15 minutos de coleta ativa, em ambientes de correnteza com substrato pedregoso. A escolha da área foi feita seguindo três critérios:1- Raridade do táxon; 2- Representatividade e complementaridade dos pontos amostrados e 3- Conectividade. A área selecionada inclui trechos de rio com diferentes características hidrológicas, que refletemas diferentes características de composição da biota. A área prioritária para conservação proposta neste trabalho inclui três microbacias: as dos rios São Bartolomeu, Corrente e São Mateus. A área indicadaé uma região de expansão de atividades antrópicas e não está atualmente protegida por unidades de conservação federais ou estaduais. As informações geradas nesse trabalho podem subsidiar uma gestão mais eficiente para a conservação da biota aquática da bacia do rio Paranã

    Subtropical streams harbour higher genus richness and lower abundance of insects compared to boreal streams, but scale matters

    Get PDF
    Aim: Biological diversity typically varies between climatically different regions, and regions closer to the equator often support higher numbers of taxa than those closer to the poles. However, these trends have been assessed for a few organism groups, and the existing studies have rarely been based on extensive identical surveys in different climatic regions. Location: We conducted standardized surveys of wadeable streams in a boreal (western Finland) and a subtropical (south-eastern Brazil) region, sampling insects identically from 100 streams in each region and measuring the same environmental variables in both regions. Taxon: Aquatic insects. Methods: Comparisons were made at the scales of local stream sites, drainage basins and entire regions. We standardized the spatial extent of the study areas by resampling regional richness based on subsets of sites with similar extents. We examined differences in genus richness and assemblage abundance patterns between the regions using graphical and statistical modelling approaches. Results: We found that while genus accumulation and rank-abundance curves were relatively similar at the regional scale between Finland and Brazil, regional genus richness was higher in the latter but regional abundance much higher in the former region. These regional patterns for richness and abundance were reproduced by basin and local genus richness that were higher in Brazil than in Finland, and assemblage abundance that was much higher in Finland than in Brazil. The magnitude of the difference in genus richness between Brazil and Finland tended to increase from local through basin to regional scales. Main conclusions: Our findings suggest that factors related to evolutionary diversification might explain differences in genus richness between these two climatically different regions, whereas higher nutrient concentrations of stream waters might explain the higher abundance of insects in Finland than in Brazil.Peer reviewe

    Sampling effort and information quality provided by rare and common species in estimating assemblage structure

    Get PDF
    Reliable biological assessments are essential to answer ecological and management questions but require well-designed studies and representative sample sizes. However, large sampling effort is rarely possible, because it demands large financial resources and time, restricting the number of sites sampled, the duration of the study and the sampling effort at each site. In this context, we need methods and protocols allowing cost-effective surveys that would, consequently, increase the knowledge about how biodiversity is distributed in space and time. Here, we assessed the minimal sampling effort required to correctly estimate the assemblage structure of stream insects sampled in near-pristine boreal and subtropical regions. We used five methods grouped into two different approaches. The first approach consisted of the removal of individuals 1) randomly or 2) based on a count threshold. The second approach consisted of simplification in terms of 1) sequential removal from rare to common species; 2) sequential removal from common to rare species; and 3) random species removal. The reliability of the methods was assessed using Procrustes analysis, which indicated the correlation between a reduced matrix (after removal of individuals or species) and the complete matrix. In many cases, we found a strong relationship between ordination patterns derived from presence/absence data (the extreme count threshold of a single individual) and those patterns derived from abundance data. Also, major multivariate patterns derived from the complete data matrices were retained even after the random removal of more than half of the individuals. Procrustes correlation was generally high ( > 0.8), even with the removal of 50% of the species. Removal of common species produced lower correlation than removal of rare species, indicating higher importance of the former to estimate resemblance between assemblages. Thus, we conclude that sampling designs can be optimized by reducing the sampling effort at a site. We recommend that such efforts saved should be redirected to increase the number of sites studied and the duration of the studies, which is essential to encompass larger spatial, temporal and environmental extents, and increase our knowledge of biodiversity.peerReviewe

    Distance Decay of Similarity in Neotropical Diatom Communities

    Get PDF
    Background The regression of similarity against distance unites several ecological phenomena, and thus provides a highly useful approach for illustrating the spatial turnover across sites. Our aim was to test whether the rates of decay in community similarity differ between diatom growth forms suggested to show different dispersal ability. We hypothesized that the diatom group with lower dispersal ability (i.e. periphyton) would show higher distance decay rates than a group with higher dispersal ability (i.e. plankton). Methods/Principal findings Periphyton and phytoplankton samples were gathered at sites distributed over an area of approximately 800 km length in the Negro River, Amazon basin, Brazil, South America (3°08′00″S; 59°54′30″W). Distance decay relationships were then estimated using distance-based regressions, and the coefficients of these regressions were compared among the groups with different dispersal abilities to assess our predictions. We found evidence that different tributaries and reaches of the Negro River harbor different diatom communities. As expected, the rates of distance decay in community similarity were higher for periphyton than for phytoplankton indicating the lower dispersal ability of periphytic taxa. Conclusions/Significance Our study demonstrates that the comparison of distance decay relationships among taxa with similar ecological requirements, but with different growth form and thus dispersal ability provides a sound approach to evaluate the effects of dispersal ability on beta diversity patterns. Our results are also in line with the growing body of evidence indicating that microorganisms exhibit biogeographic patterns. Finally, we underscore that clumbing all microbial taxa into one group may be a flawed approach to test whether microbes exhibit biogeographic patterns.Peer reviewe

    How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region

    Get PDF
    The need for biodiversity conservation is increasing at a rate much faster than the acquisition of knowledge of biodiversity, such as descriptions of new species and mapping species distributions. As global changes are winning the race against the acquisition of knowledge, many researchers resort to the use of surrogate groups to aid in conservation decisions. Reductions in taxonomic and numerical resolution are also desirable, because they could allow more rapid the acquisition of knowledge while requiring less effort, if little important information is lost. In this study, we evaluated the congruence among 22 taxonomic groups sampled in a tropical forest in the Amazon basin. Our aim was to evaluate if any of these groups could be used as surrogates for the others in monitoring programs. We also evaluated if the taxonomic or numerical resolution of possible surrogates could be reduced without greatly reducing the overall congruence. Congruence among plant groups was high, whereas the congruence among most animal groups was very low, except for anurans in which congruence values were only slightly lower than for plants. Liana (Bignoniaceae) was the group with highest congruence, even using genera presence-absence data. The congruence among groups was related to environmental factors, specifically the clay and phosphorous contents of soil. Several groups showed strong spatial clumping, but this was unrelated to the congruence among groups. The high degree of congruence of lianas with the other groups suggests that it may be a reasonable surrogate group, mainly for the other plant groups analyzed, if soil data are not available. Although lianas are difficult to count and identify, the number of studies on the ecology of lianas is increasing. Most of these studies have concluded that lianas are increasing in abundance in tropical forests. In addition to the high congruence, lianas are worth monitoring in their own right because they are sensitive to global warming and the increasing frequency and severity of droughts in tropical regions. Our findings suggest that the use of data on surrogate groups with relatively low taxonomic and numerical resolutions can be a reliable shortcut for biodiversity assessments, especially in megadiverse areas with high rates of habitat conversion, where the lack of biodiversity knowledge is pervasive. (c) 2012 Elsevier Ltd. All rights reserved.PhD scholarship from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq

    Beta diversity of stream insects differs between boreal and subtropical regions, but land use does not generally cause biotic homogenization

    Get PDF
    Previous studies have found mixed results regarding the relationship between beta diversity and latitude. In addition, by influencing local environmental heterogeneity, land use may modify spatial taxonomic and functional variability among communities causing biotic differentiation or homogenization. We tested 1) whether taxonomic and functional beta diversities among streams within watersheds differ between subtropical and boreal regions and 2) whether land use is related to taxonomic and functional beta diversities in both regions. We sampled aquatic insects in 100 subtropical (Brazil) and 100 boreal (Finland) streams across a wide gradient of land use, including agriculture and exotic planted, secondary, and native forests. We calculated beta diversity at the watershed scale (among 5 streams in each watershed). We found higher taxonomic beta diversity among subtropical than among boreal streams, whereas functional beta diversity was similar between the 2 regions. Total land use was positively correlated with taxonomic and functional beta diversity among subtropical streams, while local environmental heterogeneity was positively correlated with beta diversity among boreal streams. We suggest that different types and intensities of land use may increase among-stream heterogeneity, promoting distinct insect assemblage compositions among streams. Our findings also suggest that beta diversity patterns and their underlying determinants are highly context dependent

    A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels.

    Get PDF
    The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low
    • …
    corecore