132 research outputs found

    Balancing the dilution and oddity effects: Decisions depend on body size

    Get PDF
    Background Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. Methodology and Principal Findings We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Conclusions and Significance Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions

    Performance benchmarks for a next generation numerical dynamo model

    Get PDF
    Numerical simulations of the geodynamo have successfully represented many observable characteristics of the geomagnetic field, yielding insight into the fundamental processes that generate magnetic fields in the Earth's core. Because of limited spatial resolution, however, the diffusivities in numerical dynamo models are much larger than those in the Earth's core, and consequently, questions remain about how realistic these models are. The typical strategy used to address this issue has been to continue to increase the resolution of these quasi-laminar models with increasing computational resources, thus pushing them toward more realistic parameter regimes. We assess which methods are most promising for the next generation of supercomputers, which will offer access to O(106) processor cores for large problems. Here we report performance and accuracy benchmarks from 15 dynamo codes that employ a range of numerical and parallelization methods. Computational performance is assessed on the basis of weak and strong scaling behavior up to 16,384 processor cores. Extrapolations of our weak-scaling results indicate that dynamo codes that employ two-dimensional or three-dimensional domain decompositions can perform efficiently on up to ∼106 processor cores, paving the way for more realistic simulations in the next model generation

    Social Waves in Giant Honeybees Repel Hornets

    Get PDF
    Giant honeybees (Apis dorsata) nest in the open and have evolved a plethora of defence behaviors. Against predatory wasps, including hornets, they display highly coordinated Mexican wave-like cascades termed ‘shimmering’. Shimmering starts at distinct spots on the nest surface and then spreads across the nest within a split second whereby hundreds of individual bees flip their abdomens upwards. However, so far it is not known whether prey and predator interact and if shimmering has anti-predatory significance. This article reports on the complex spatial and temporal patterns of interaction between Giant honeybee and hornet exemplified in 450 filmed episodes of two A. dorsata colonies and hornets (Vespa sp.). Detailed frame-by-frame analysis showed that shimmering elicits an avoidance response from the hornets showing a strong temporal correlation with the time course of shimmering. In turn, the strength and the rate of the bees' shimmering are modulated by the hornets' flight speed and proximity. The findings suggest that shimmering creates a ‘shelter zone’ of around 50 cm that prevents predatory wasps from foraging bees directly from the nest surface. Thus shimmering appears to be a key defence strategy that supports the Giant honeybees' open-nesting life-style

    Lavoisier: A Low Altitude Balloon Network for Probing the Deep Atmosphere and Surface of Venus

    Get PDF
    The in-situ exploration of the low atmosphere and surface of Venus is clearly the next step of Venus exploration. Understanding the geochemistry of the low atmosphere, interacting with rocks, and the way the integrated Venus system evolved, under the combined effects of inner planet cooling and intense atmospheric greenhouse, is a major challenge of modern planetology. Due to the dense atmosphere (95 bars at the surface), balloon platforms offer an interesting means to transport and land in-situ measurement instruments. Due to the large Archimede force, a 2 cubic meter He-pressurized balloon floating at 10 km altitude may carry up to 60 kg of payload. LAVOISIER is a project submitted to ESA in 2000, in the follow up and spirit of the balloon deployed at cloud level by the Russian Vega mission in 1986. It is composed of a descent probe, for detailed noble gas and atmosphere composition analysis, and of a network of 3 balloons for geochemical and geophysical investigations at local, regional and global scales

    When Music and Long-Term Memory Interact: Effects of Musical Expertise on Functional and Structural Plasticity in the Hippocampus

    Get PDF
    The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music). Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM) investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus

    Fear of predation drives stable and differentiated social relationships in guppies

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this record.Social relationships can have important consequences for fitness in animals. Whilst numerous studies have shown that individuals often join larger groups in response to perceived predation risk (i.e. fear of predation), the importance of predation risk in driving the formation and stability of social relationships within groups has been relatively ignored. We experimentally tested how predation threat influenced fine-scale social network structure using Trinidadian guppies (Poecilia reticulata). When perceived predation risk was high, individuals developed stable and more differentiated social ties compared to when perceived risk was low. Intriguingly, social differentiation coincided with shoals being somewhat smaller under high-perceived risk, suggesting a possible conflict between forming stable social relationships and larger social groups. Individuals most at risk of predation (large and bold individuals) showed the most exaggerated responses in several social measures. Taken together, we provide the first experimental evidence that proximate risk of predation can increase the intensity of social relationships and fine-scale social structure in animal populations.DPC acknowledges funding from the National Environmental Research Council (NE/E001181/1) and Leverhulme Trust (RPG-175) and SKD and DPC acknowledge funding from The Danish Council for Independent Research (DFF – 1323-00105)

    Effect of an 18-Month Meditation Training on Regional Brain Volume and Perfusion in Older Adults: The Age-Well Randomized Clinical Trial.

    Get PDF
    peer reviewedImportance: No lifestyle-based randomized clinical trial directly targets psychoaffective risk factors of dementia. Meditation practices recently emerged as a promising mental training exercise to foster brain health and reduce dementia risk. Objective: To investigate the effects of meditation training on brain integrity in older adults. Design, Setting, and Participants: Age-Well was a randomized, controlled superiority trial with blinded end point assessment. Community-dwelling cognitively unimpaired adults 65 years and older were enrolled between November 24, 2016, and March 5, 2018, in France. Participants were randomly assigned (1:1:1) to (1) an 18-month meditation-based training, (2) a structurally matched non-native language (English) training, or (3) no intervention arm. Analysis took place between December 2020 and October 2021. Interventions: Meditation and non-native language training included 2-hour weekly group sessions, practice of 20 minutes or longer daily at home, and 1-day intensive practices. Main Outcomes and Measures: Primary outcomes included volume and perfusion of anterior cingulate cortex (ACC) and insula. Main secondary outcomes included a global composite score capturing metacognitive, prosocial, and self-regulatory capacities and constituent subscores. Results: Among 137 participants (mean [SD] age, 69.4 [3.8] years; 83 [60.6%] female; 54 [39.4%] male) assigned to the meditation (n = 45), non-native language training (n = 46), or no intervention (n = 46) groups, all but 1 completed the trial. There were no differences in volume changes of ACC (0.01 [98.75% CI, -0.02 to 0.05]; P = .36) or insula (0.01 [98.75% CI, -0.02 to 0.03]; P = .58) between meditation and no intervention or non-native language training groups, respectively. Differences in perfusion changes did not reach statistical significance for meditation compared with no intervention in ACC (0.02 [98.75% CI, -0.01 to 0.05]; P = .06) or compared with non-native language training in insula (0.02 [98.75% CI, -0.01 to 0.05]; P = .09). Meditation was superior to non-native language training on 18-month changes in a global composite score capturing attention regulation, socioemotional, and self-knowledge capacities (Cohen d, 0.52 [95% CI, 0.19-0.85]; P = .002). Conclusions and Relevance: The study findings confirm the feasibility of meditation and non-native language training in elderly individuals, with high adherence and very low attrition. Findings also show positive behavioral effects of meditation that were not reflected on volume, and not significantly on perfusion, of target brain areas. Trial Registration: ClinicalTrials.gov Identifier: NCT02977819

    Effect of width, amplitude, and position of a core mantle boundary hot spot on core convection and dynamo action

    Get PDF
    Within the fluid iron cores of terrestrial planets, convection and the resulting generation of global magnetic fields are controlled by the overlying rocky mantle. The thermal structure of the lower mantle determines how much heat is allowed to escape the core. Hot lower mantle features, such as the thermal footprint of a giant impact or hot mantle plumes, will locally reduce the heat flux through the core mantle boundary (CMB), thereby weakening core convection and affecting the magnetic field generation process. In this study, we numerically investigate how parametrised hot spots at the CMB with arbitrary sizes, amplitudes, and positions affect core convection and hence the dynamo. The effect of the heat flux anomaly is quantified by changes in global flow symmetry properties, such as the emergence of equatorial antisymmetric, axisymmetric (EAA) zonal flows. For purely hydrodynamic models, the EAA symmetry scales almost linearly with the CMB amplitude and size, whereas self-consistent dynamo simulations typically reveal either suppressed or drastically enhanced EAA symmetry depending mainly on the horizontal extent of the heat flux anomaly. Our results suggest that the length scale of the anomaly should be on the same order as the outer core radius to significantly affect flow and field symmetries. As an implication to Mars and in the range of our model, the study concludes that an ancient core field modified by a CMB heat flux anomaly is not able to heterogeneously magnetise the crust to the present-day level of north–south asymmetry on Mars. The resulting magnetic fields obtained using our model either are not asymmetric enough or, when they are asymmetric enough, show rapid polarity inversions, which are incompatible with thick unidirectional magnetisation
    • …
    corecore