95 research outputs found

    Application of Liquid Biopsies in Cancer Targeted Therapy.

    Get PDF
    As a growing body of evidence demonstrates intertumoral and intratumoral heterogeneity and clonal evolution, both during carcinogenesis and also throughout treatment resulting in acquired drug resistance, the utility of blood-based assays or "liquid biopsies" is becoming increasingly recognized in clinical practice and trial design. "Liquid biopsies" provide a less invasive approach to the current gold standard of interrogating tumors by tissue biopsies, which are frequently unfeasible, associated with morbidity, and cannot be performed as often

    Knockout studies reveal an important role of <i>plasmodium</i> lipoic acid protein ligase a1 for asexual blood stage parasite survival

    Get PDF
    Lipoic acid (LA) is a dithiol-containing cofactor that is essential for the function of a-keto acid dehydrogenase complexes. LA acts as a reversible acyl group acceptor and 'swinging arm' during acyl-coenzyme A formation. The cofactor is post-translationally attached to the acyl-transferase subunits of the multienzyme complexes through the action of octanoyl (lipoyl): &lt;i&gt;N&lt;/i&gt;-octanoyl (lipoyl) transferase (LipB) or lipoic acid protein ligases (LplA). Remarkably, apicomplexan parasites possess LA biosynthesis as well as scavenging pathways and the two pathways are distributed between mitochondrion and a vestigial organelle, the apicoplast. The apicoplast-specific LipB is dispensable for parasite growth due to functional redundancy of the parasite's lipoic acid/octanoic acid ligases/transferases. In this study, we show that &lt;i&gt;LplA1&lt;/i&gt; plays a pivotal role during the development of the erythrocytic stages of the malaria parasite. Gene disruptions in the human malaria parasite &lt;i&gt;P.falciparum&lt;/i&gt; consistently were unsuccessful while in the rodent malaria model parasite &lt;i&gt;P. berghei&lt;/i&gt; the &lt;i&gt;LplA1&lt;/i&gt; gene locus was targeted by knock-in and knockout constructs. However, the &lt;i&gt;LplA1&lt;/i&gt; &lt;sup&gt;(-)&lt;/sup&gt; mutant could not be cloned suggesting a critical role of LplA1 for asexual parasite growth &lt;i&gt;in vitro&lt;/i&gt; and &lt;i&gt;in vivo&lt;/i&gt;. These experimental genetics data suggest that lipoylation during expansion in red blood cells largely occurs through salvage from the host erythrocytes and subsequent ligation of LA to the target proteins of the malaria parasite

    Comparison of the in vitro invasive capabilities of Plasmodium falciparum schizonts isolated by Percoll gradient or using magnetic based separation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Percoll gradient centrifugation is often used for synchronization, enrichment, or isolation of a particular stage of <it>Plasmodium falciparum</it>. However, Percoll, a hyperosmotic agent, may have harmful effects on the parasites. Magnetic bead column (MBC) separation has been used as an alternative. This is a report of a head-to-head comparison of the <it>in vitro </it>invasive capabilities of parasites isolated by either of the two methods.</p> <p>Methods</p> <p>The <it>P. falciparum </it>laboratory strain isolate 7G8 was grown <it>in vitro </it>using standard procedures and synchronized using 5% sorbitol. On separate days when the schizont parasitaemia was >1%, the culture was split and half was processed by Percoll gradient centrifugation and the other half by magnetic bead column separation. Both processed parasites were placed back in culture and allowed to invade new uninfected erythrocytes.</p> <p>Results</p> <p>In 10 paired assays, the mean efficiency of invasion of 7G8 parasites treated by Percoll gradient centrifugation was 35.8% that of those treated by magnetic bead column separation (95% CI, p = 0.00067) A paired <it>t </it>test with two tails was used for these comparisons.</p> <p>Conclusions</p> <p>In this comparison, magnetic bead column separation of 7G8 schizonts resulted in higher viability and efficiency of invasion than utilizing Percoll gradient centrifugation.</p

    Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury

    Get PDF
    Context: Military recruits and elite athletes are susceptible to stress fracture injuries. Genetic predisposition has been postulated to have a role in their development. The P2X7 receptor (P2X7R) gene, a key regulator of bone remodelling, is a genetic candidate that may contribute to stress fracture predisposition. Objective: To evaluate the putative contribution of P2X7R to stress fracture injury in two separate cohorts, military personnel and elite athletes. Methods: In 210 Israeli Defence Forces (IDF) military conscripts, stress fracture injury was diagnosed (n=43) based on symptoms and a positive bone scan. In a separate cohort of 518 elite athletes, self-reported medical imaging scan-certified stress fracture injuries were recorded (n=125). Non-stress fracture controls were identified from these cohorts who had a normal bone scan or no history or symptoms of stress fracture injury. Study participants were genotyped for functional SNPs within the P2X7R gene using proprietary fluorescence-based competitive allele-specific PCR assay. Pearson Chi-square (χ2) tests, corrected for multiple comparisons, were used to assess associations in genotype frequencies. Results: The variant allele of P2X7R SNP rs3751143 (Glu496Ala- loss of function) was associated with stress fracture injury, while the variant allele of rs1718119 (Ala348Thr- gain of function) was associated with a reduced occurrence of stress fracture injury in military conscripts (P<0.05). The association of the variant allele of rs3751143 with stress fractures was replicated in elite athletes (P<0.05), whereas the variant allele of rs1718119 was also associated with reduced multiple stress fracture cases in elite athletes (P<0.05). Conclusions: The association between independent P2X7R polymorphisms with stress fracture prevalence supports the role of a genetic predisposition in the development of stress fracture injury

    Automated array-CGH optimized for archival formalin-fixed, paraffin-embedded tumor material

    Get PDF
    BACKGROUND: Array Comparative Genomic Hybridization (aCGH) is a rapidly evolving technology that still lacks complete standardization. Yet, it is of great importance to obtain robust and reproducible data to enable meaningful multiple hybridization comparisons. Special difficulties arise when aCGH is performed on archival formalin-fixed, paraffin-embedded (FFPE) tissue due to its variable DNA quality. Recently, we have developed an effective DNA quality test that predicts suitability of archival samples for BAC aCGH. METHODS: In this report, we first used DNA from a cancer cell-line (SKBR3) to optimize the aCGH protocol for automated hybridization, and subsequently optimized and validated the procedure for FFPE breast cancer samples. We aimed for highest throughput, accuracy, and reproducibility applicable to FFPE samples, which can also be important in future diagnostic use. RESULTS: Our protocol of automated array-CGH on archival FFPE ULS-labeled DNA showed very similar results compared with published data and our previous manual hybridization method. CONCLUSION: This report combines automated aCGH on unamplified archival FFPE DNA using non-enzymatic ULS labeling, and describes an optimized protocol for this combination resulting in improved quality and reproducibility

    Validation of Plasmodium falciparum dUTPase as the target of 5'-tritylated deoxyuridine analogues with anti-malarial activity

    Get PDF
    BACKGROUND: Malaria remains as a major global problem, being one of the infectious diseases that engender highest mortality across the world. Due to the appearance of resistance and the lack of an effective vaccine, the search of novel anti-malarials is required. Deoxyuridine 5'-triphosphate nucleotido-hydrolase (dUTPase) is responsible for the hydrolysis of dUTP to dUMP within the parasite and has been proposed as an essential step in pyrimidine metabolism by providing dUMP for thymidylate biosynthesis. In this work, efforts to validate dUTPase as a drug target in Plasmodium falciparum are reported. METHODS: To investigate the role of PfdUTPase in cell survival different strategies to generate knockout mutants were used. For validation of PfdUTPase as the intracellular target of four inhibitors of the enzyme, mutants overexpressing PfdUTPase and HsdUTPase were created and the IC50 for each cell line with each compound was determined. The effect of these compounds on dUTP and dTTP levels from P. falciparum was measured using a DNA polymerase assay. Detailed localization studies by indirect immunofluorescence microscopy and live cell imaging were also performed using a cell line overexpressing a Pfdut-GFP fusion protein. RESULTS:Different attempts of disruption of the dut gene of P. falciparum were unsuccessful while a 3' replacement construct could recombine correctly in the locus suggesting that the enzyme is essential. The four 5'-tritylated deoxyuridine analogues described are potent inhibitors of the P. falciparum dUTPase and exhibit antiplasmodial activity. Overexpression of the Plasmodium and human enzymes conferred resistance against selective compounds, providing chemical validation of the target and confirming that indeed dUTPase inhibition is involved in anti-malarial activity. In addition, incubation with these inhibitors was associated with a depletion of the dTTP pool corroborating the central role of dUTPase in dTTP synthesis. PfdUTPase is mainly localized in the cytosol. CONCLUSION: These results strongly confirm the pivotal and essential role of dUTPase in pyrimidine biosynthesis of P. falciparum intraerythrocytic stages

    Aerosolized Delivery of Antifungal Agents

    Get PDF
    Pulmonary infections caused by Aspergillus species are associated with significant morbidity and mortality in immunocompromised patients. Although the treatment of pulmonary fungal infections requires the use of systemic agents, aerosolized delivery is an attractive option in prevention because the drug can concentrate locally at the site of infection with minimal systemic exposure. Current clinical evidence for the use of aerosolized delivery in preventing fungal infections is limited to amphotericin B products, although itraconazole, voriconazole, and caspofungin are under investigation. Based on conflicting results from clinical trials that evaluated various amphotericin B formulations, the routine use of aerosolized delivery cannot be recommended. Further research with well-designed clinical trials is necessary to elucidate the therapeutic role and risks associated with aerosolized delivery of antifungal agents. This article provides an overview of aerosolized delivery systems, the intrapulmonary pharmacokinetic properties of aerosolized antifungal agents, and key findings from clinical studies

    A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development

    Get PDF
    Microscopic examination of Giemsa-stained thin blood smears remains the gold standard method used to quantify and stage malaria parasites. However, this technique is tedious, and requires trained microscopists. We have developed a fast and simple flow cytometry method to quantify and stage, various malaria parasites in red blood cells in whole blood or in vitro cultured Plasmodium falciparum. The parasites were stained with dihydroethidium and Hoechst 33342 or SYBR Green I and leukocytes were identified with an antibody against CD45. Depending on the DNA stains used, samples were analyzed using different models of flow cytometers. This protocol, which does not require any washing steps, allows infected red blood cells to be distinguished from leukocytes, as well as allowing non-infected reticulocytes and normocytes to be identified. It also allows assessing the proportion of parasites at different developmental stages. Lastly, we demonstrate how this technique can be applied to antimalarial drug testing
    corecore