109 research outputs found

    On the Origin of the Outgoing Black Hole Modes

    Get PDF
    The question of how to account for the outgoing black hole modes without drawing upon a transplanckian reservoir at the horizon is addressed. It is argued that the outgoing modes must arise via conversion from ingoing modes. It is further argued that the back-reaction must be included to avoid the conclusion that particle creation cannot occur in a strictly stationary background. The process of ``mode conversion" is known in plasma physics by this name and in condensed matter physics as ``Andreev reflection" or ``branch conversion". It is illustrated here in a linear Lorentz non-invariant model introduced by Unruh. The role of interactions and a physical short distance cutoff is then examined in the sonic black hole formed with Helium-II.Comment: 12 pages, plain latex, 2 figures included using psfig; Analogy to ``Andreev reflection" in superfluid systems noted, references and acknowledgment added, format changed to shorten tex

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Der Mythos im Alten Mesopotamien, sein Werden und Vergehen

    No full text

    SPR-based single nucleotide mismatch biosensor

    Full text link
    The detection and characterization of the hybridization event of 21-base, unlabeled DNA oligonucleotides with a monolayer of complementary DNA immobilized on a gold surface, by electrochemical impedance spectroscopy and surface plasmon resonance (SPR) is presented. A thiol modification on the probe DNA strand allowed for its attachment to the surface via self-assembly. For the hybridization of full match target DNA a detection limit of 20 pM was determined. RNA hybridization was also detectable with the same sensor, with a similar detection limit. The SPR signal generated upon hybridization of the full match was always distinguishable from the single mismatch target DNA oligonucleotides when the mismatch was in the middle or at the proximal end of the target DNA sequence. However, the response of the sensor was identical for the hybridization of the full match and the distal end mismatch. The SPR sensor described is reusable over at least 20 hybridization/regeneration cycles and is insensitive to flow rate (20-800 L min -1) or temperature (20-60°C). Based on the SPR response, the surface density of the probe was estimated to be at least 4.3 ¿ 10 12 molecules per cm 2. © 2011 The Royal Society of Chemistry.This project was partially supported by the US Army Medical Research and Materiel Command (USAMRMC) and the Telemedicine and Advanced Technology Research Center (TATRC) We note that ICx Nomadics (Stillwater, OK, USA) is now ICx Technologies (Arlington, VA, USA).Milkani, E.; Khaing, A.; Morais Ezquerro, SB.; C.R. LAMBERT; W.G. MCGIMPSEY (2011). SPR-based single nucleotide mismatch biosensor. Analytical Methods. 3:122-132. https://doi.org/10.1039/c0ay00492hS1221323HapMap, Nature, 2003, 426, 789796R. A. King , J. I.Rotter and A. G.Motulsky, The Genetic Basis of Common Diseases, Oxford Univ. Press, Oxford, 1992, vol. 20HapMap, Nature, 2005, 437, 12991320The International HapMap Project, http://www.hapmap.orgThe Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB), http://www.pharmgkb.orgGrishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., … Mello, C. C. (2001). Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Cell, 106(1), 23-34. doi:10.1016/s0092-8674(01)00431-7Hwang, H.-W., & Mendell, J. T. (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer, 94(6), 776-780. doi:10.1038/sj.bjc.6603023Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854. doi:10.1016/0092-8674(93)90529-yCissell, K. A., Shrestha, S., & Deo, S. K. (2007). MicroRNA Detection: Challenges for the Analytical Chemist. Analytical Chemistry, 79(13), 4754-4761. doi:10.1021/ac0719305Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1-2), 3-15. doi:10.1016/s0925-4005(98)00321-9Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377(3), 528-539. doi:10.1007/s00216-003-2101-0Jin, W., Lin, X., Lv, S., Zhang, Y., Jin, Q., & Mu, Y. (2009). A DNA sensor based on surface plasmon resonance for apoptosis-associated genes detection. Biosensors and Bioelectronics, 24(5), 1266-1269. doi:10.1016/j.bios.2008.07.031Ladd, J., Taylor, A. D., Piliarik, M., Homola, J., & Jiang, S. (2008). Hybrid Surface Platform for the Simultaneous Detection of Proteins and DNAs Using a Surface Plasmon Resonance Imaging Sensor. Analytical Chemistry, 80(11), 4231-4236. doi:10.1021/ac800263jNelson, B. P., Grimsrud, T. E., Liles, M. R., Goodman, R. M., & Corn, R. M. (2001). Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays. Analytical Chemistry, 73(1), 1-7. doi:10.1021/ac0010431Schuck, P. (1997). USE OF SURFACE PLASMON RESONANCE TO PROBE THE EQUILIBRIUM AND DYNAMIC ASPECTS OF INTERACTIONS BETWEEN BIOLOGICAL MACROMOLECULES. Annual Review of Biophysics and Biomolecular Structure, 26(1), 541-566. doi:10.1146/annurev.biophys.26.1.541Kai, E., Sawata, S., Ikebukuro, K., Iida, T., Honda, T., & Karube, I. (1999). Detection of PCR Products in Solution Using Surface Plasmon Resonance. Analytical Chemistry, 71(4), 796-800. doi:10.1021/ac9807161Persson, B., Stenhag, K., Nilsson, P., Larsson, A., Uhlén, M., & Nygren, P.-Å. (1997). Analysis of Oligonucleotide Probe Affinities Using Surface Plasmon Resonance: A Means for Mutational Scanning. Analytical Biochemistry, 246(1), 34-44. doi:10.1006/abio.1996.9988Yang, N., Su, X., Tjong, V., & Knoll, W. (2007). Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein–DNA binding. Biosensors and Bioelectronics, 22(11), 2700-2706. doi:10.1016/j.bios.2006.11.012Mark, S. S., Sandhyarani, N., Zhu, C., Campagnolo, C., & Batt, C. A. (2004). Dendrimer-Functionalized Self-Assembled Monolayers as a Surface Plasmon Resonance Sensor Surface. Langmuir, 20(16), 6808-6817. doi:10.1021/la0495276Vaisocherová, H., Zítová, A., Lachmanová, M., ??t??pánek, J., Králíková, ??árka, Liboska, R., … Homola, J. (2006). Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method. Biopolymers, 82(4), 394-398. doi:10.1002/bip.20433He, L., Musick, M. D., Nicewarner, S. R., Salinas, F. G., Benkovic, S. J., Natan, M. J., & Keating, C. D. (2000). Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. Journal of the American Chemical Society, 122(38), 9071-9077. doi:10.1021/ja001215bNabok, A., Tsargorodskaya, A., Davis, F., & Higson, S. P. J. (2007). The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry. Biosensors and Bioelectronics, 23(3), 377-383. doi:10.1016/j.bios.2007.04.020Nabok, A., Tsargorodskaya, A., Gauthier, D., Davis, F., Higson, S. P. J., Berzina, T., … Fontana, M. P. (2009). Hybridization of Genomic DNA Adsorbed Electrostatically onto Cationic Surfaces. The Journal of Physical Chemistry B, 113(22), 7897-7902. doi:10.1021/jp9010636Fritz, J. (2000). Translating Biomolecular Recognition into Nanomechanics. Science, 288(5464), 316-318. doi:10.1126/science.288.5464.316Nakatani, K., Kobori, A., Kumasawa, H., & Saito, I. (2004). Highly sensitive detection of GG mismatched DNA by surfaces immobilized naphthyridine dimer through poly(ethylene oxide) linkers. Bioorganic & Medicinal Chemistry Letters, 14(5), 1105-1108. doi:10.1016/j.bmcl.2003.12.079Hagihara, S. (2004). Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface. Nucleic Acids Research, 32(1), 278-286. doi:10.1093/nar/gkh171Jiang, T., Minunni, M., Wilson, P., Zhang, J., Turner, A. P. F., & Mascini, M. (2005). Detection of TP53 mutation using a portable surface plasmon resonance DNA-based biosensor. Biosensors and Bioelectronics, 20(10), 1939-1945. doi:10.1016/j.bios.2004.08.040Tawa, K. (2004). Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy. Nucleic Acids Research, 32(8), 2372-2377. doi:10.1093/nar/gkh572Dell’Atti, D., Tombelli, S., Minunni, M., & Mascini, M. (2006). Detection of clinically relevant point mutations by a novel piezoelectric biosensor. Biosensors and Bioelectronics, 21(10), 1876-1879. doi:10.1016/j.bios.2005.11.023Milkani, E., Morais, S., Lambert, C. R., & McGimpsey, W. G. (2010). Detection of oligonucleotide systematic mismatches with a surface plasmon resonance sensor. Biosensors and Bioelectronics, 25(5), 1217-1220. doi:10.1016/j.bios.2009.09.010Cai, H., Lee, T. M.-H., & Hsing, I.-M. (2006). Label-free protein recognition using an aptamer-based impedance measurement assay. Sensors and Actuators B: Chemical, 114(1), 433-437. doi:10.1016/j.snb.2005.06.017Gong, P., Lee, C.-Y., Gamble, L. J., Castner, D. G., & Grainger, D. W. (2006). Hybridization Behavior of Mixed DNA/Alkylthiol Monolayers on Gold:  Characterization by Surface Plasmon Resonance and32P Radiometric Assay. Analytical Chemistry, 78(10), 3326-3334. doi:10.1021/ac052138bPeterson, A. W. (2001). The effect of surface probe density on DNA hybridization. Nucleic Acids Research, 29(24), 5163-5168. doi:10.1093/nar/29.24.5163Wong, E. L. S., Mearns, F. J., & Gooding, J. J. (2005). Further development of an electrochemical DNA hybridization biosensor based on long-range electron transfer. Sensors and Actuators B: Chemical, 111-112, 515-521. doi:10.1016/j.snb.2005.03.072Herne, T. M., & Tarlov, M. J. (1997). Characterization of DNA Probes Immobilized on Gold Surfaces. Journal of the American Chemical Society, 119(38), 8916-8920. doi:10.1021/ja9719586Ito, T., Hosokawa, K., & Maeda, M. (2007). Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 22(8), 1816-1819. doi:10.1016/j.bios.2006.08.008Randles, J. E. B. (1947). Kinetics of rapid electrode reactions. Discussions of the Faraday Society, 1, 11. doi:10.1039/df9470100011Katz, E., & Willner, I. (2003). Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis, 15(11), 913-947. doi:10.1002/elan.200390114J. R. Macdonald , Impedance Spectroscopy, Wiley/Interscience, New York, 1987Bardea, A., Katz, E., & Willner, I. (2000). Probing Antigen-Antibody Interactions on Electrode Supports by the Biocatalyzed Precipitation of an Insoluble Product. Electroanalysis, 12(14), 1097-1106. doi:10.1002/1521-4109(200010)12:143.0.co;2-xSavitri, D., & Mitra, C. K. (1999). Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance measurements. Bioelectrochemistry and Bioenergetics, 48(1), 163-169. doi:10.1016/s0302-4598(98)00227-xPatolsky, F., Lichtenstein, A., & Willner, I. (2001). Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nature Biotechnology, 19(3), 253-257. doi:10.1038/85704Long, Y.-T., Li, C.-Z., Sutherland, T. C., Kraatz, H.-B., & Lee, J. S. (2004). Electrochemical Detection of Single-Nucleotide Mismatches:  Application of M-DNA. Analytical Chemistry, 76(14), 4059-4065. doi:10.1021/ac049482dLiu, J., Tian, S., Nielsen, P. E., & Knoll, W. (2005). In situ hybridization of PNA/DNA studied label-free by electrochemical impedance spectroscopy. Chemical Communications, (23), 2969. doi:10.1039/b419425jGautier, C., Cougnon, C., Pilard, J.-F., Casse, N., Chénais, B., & Laulier, M. (2007). Detection and modelling of DNA hybridization by EIS measurements. Biosensors and Bioelectronics, 22(9-10), 2025-2031. doi:10.1016/j.bios.2006.08.040Li, A., Yang, F., Ma, Y., & Yang, X. (2007). Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosensors and Bioelectronics, 22(8), 1716-1722. doi:10.1016/j.bios.2006.07.033A. Paproth , K.-J.Wolter, T.Herzog and T.Zerna, 24th International Spring Seminar on Electronics Technology, Calimanesti-Caciulata, Romania, May 5–9, 2001Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., & Whitesides, G. M. (2005). Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 105(4), 1103-1170. doi:10.1021/cr0300789Erickson, D., Li, D., & Krull, U. J. (2003). Modeling of DNA hybridization kinetics for spatially resolved biochips. Analytical Biochemistry, 317(2), 186-200. doi:10.1016/s0003-2697(03)00090-3Lenigk, R., Liu, R. H., Athavale, M., Chen, Z., Ganser, D., Yang, J., … Grodzinski, P. (2002). Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays. Analytical Biochemistry, 311(1), 40-49. doi:10.1016/s0003-2697(02)00391-3Noerholm, M., Bruus, H., Jakobsen, M. H., Telleman, P., & Ramsing, N. B. (2004). Polymer microfluidic chip for online monitoring of microarray hybridizations. Lab on a Chip, 4(1), 28. doi:10.1039/b311991bYuen, P. K., Li, G., Bao, Y., & Müller, U. R. (2003). Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays. Lab Chip, 3(1), 46-50. doi:10.1039/b210274aOkahata, Y., Kawase, M., Niikura, K., Ohtake, F., Furusawa, H., & Ebara, Y. (1998). Kinetic Measurements of DNA Hybridization on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance. Analytical Chemistry, 70(7), 1288-1296. doi:10.1021/ac970584wV. A. Bloomfield , D. M.Crothers and I.Tinoco, Nucleic Acids—Structures, Properties, and Functions, University Science Books, Sausalito, CA, 2000Thiel, A. J., Frutos, A. G., Jordan, C. E., Corn, R. M., & Smith, L. M. (1997). In Situ Surface Plasmon Resonance Imaging Detection of DNA Hybridization to Oligonucleotide Arrays on Gold Surfaces. Analytical Chemistry, 69(24), 4948-4956. doi:10.1021/ac9708001Fiche, J. B., Buhot, A., Calemczuk, R., & Livache, T. (2007). Temperature Effects on DNA Chip Experiments from Surface Plasmon Resonance Imaging: Isotherms and Melting Curves. Biophysical Journal, 92(3), 935-946. doi:10.1529/biophysj.106.097790Levicky, R., & Horgan, A. (2005). Physicochemical perspectives on DNA microarray and biosensor technologies. Trends in Biotechnology, 23(3), 143-149. doi:10.1016/j.tibtech.2005.01.004Harris, D. C. (1998). Nonlinear Least-Squares Curve Fitting with Microsoft Excel Solver. Journal of Chemical Education, 75(1), 119. doi:10.1021/ed075p119Linman, M. J., Taylor, J. D., Yu, H., Chen, X., & Cheng, Q. (2008). Surface Plasmon Resonance Study of Protein−Carbohydrate Interactions Using Biotinylated Sialosides. Analytical Chemistry, 80(11), 4007-4013. doi:10.1021/ac702566eStenberg, E., Persson, B., Roos, H., & Urbaniczky, C. (1991). Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. Journal of Colloid and Interface Science, 143(2), 513-526. doi:10.1016/0021-9797(91)90284-fVainrub, A., & Pettitt, B. M. (2002). Coulomb blockage of hybridization in two-dimensional DNA arrays. Physical Review E, 66(4). doi:10.1103/physreve.66.041905Vainrub, A., & Pettitt, B. M. (2003). Sensitive Quantitative Nucleic Acid Detection Using Oligonucleotide Microarrays. Journal of the American Chemical Society, 125(26), 7798-7799. doi:10.1021/ja035020

    Mutation at the hprt locus

    No full text
    corecore