292 research outputs found
Tilt Texture Domains on a Membrane and Chirality induced Budding
We study the equilibrium conformations of a lipid domain on a planar fluid
membrane where the domain is decorated by a vector field representing the tilt
of the stiff fatty acid chains of the lipid molecules, while the surrounding
membrane is fluid and structureless. The inclusion of chirality in the bulk of
the domain induces a novel budding of the membrane, which preempts the budding
induced by a decrease in interfacial tension.Comment: 5 pages, 3 figure
Neurocalcin regulates nighttime sleep and arousal in Drosophila
Sleep-like states in diverse organisms can be separated into distinct stages, each with a characteristic arousal threshold. However, the molecular pathways underlying different sleep stages remain unclear. The fruit fly, Drosophila melanogaster, exhibits consolidated sleep during both day and night, with night sleep associated with higher arousal thresholds compared to day sleep. Here we identify a role for the neuronal calcium sensor protein Neurocalcin (NCA) in promoting sleep during the night but not the day by suppressing nocturnal arousal and hyperactivity. We show that both circadian and light-sensing pathways define the temporal window in which NCA promotes sleep. Furthermore, we find that NCA promotes sleep by suppressing synaptic release from a dispersed wake-promoting neural network and demonstrate that the mushroom bodies, a sleep-regulatory center, are a module within this network. Our results advance the understanding of how sleep stages are genetically defined
Mechanism of HCV's resistance to IFN-α in cell culture involves expression of functional IFN-α receptor 1
The mechanisms underlying the Hepatitis C virus (HCV) resistance to interferon alpha (IFN-α) are not fully understood. We used IFN-α resistant HCV replicon cell lines and an infectious HCV cell culture system to elucidate the mechanisms of IFN-α resistance in cell culture. The IFN-α resistance mechanism of the replicon cells were addressed by a complementation study that utilized the full-length plasmid clones of IFN-α receptor 1 (IFNAR1), IFN-α receptor 2 (IFNAR2), Jak1, Tyk2, Stat1, Stat2 and the ISRE- luciferase reporter plasmid. We demonstrated that the expression of the full-length IFNAR1 clone alone restored the defective Jak-Stat signaling as well as Stat1, Stat2 and Stat3 phosphorylation, nuclear translocation and antiviral response against HCV in all IFN-α resistant cell lines (R-15, R-17 and R-24) used in this study. Moreover RT-PCR, Southern blotting and DNA sequence analysis revealed that the cells from both R-15 and R-24 series of IFN-α resistant cells have 58 amino acid deletions in the extracellular sub domain 1 (SD1) of IFNAR1. In addition, cells from the R-17 series have 50 amino acids deletion in the sub domain 4 (SD4) of IFNAR1 protein leading to impaired activation of Tyk2 kinase. Using an infectious HCV cell culture model we show here that viral replication in the infected Huh-7 cells is relatively resistant to exogenous IFN-α. HCV infection itself induces defective Jak-Stat signaling and impairs Stat1 and Stat2 phosphorylation by down regulation of the cell surface expression of IFNAR1 through the endoplasmic reticulum (ER) stress mechanisms. The results of this study suggest that expression of cell surface IFNAR1 is critical for the response of HCV to exogenous IFN-α
Identification of a new cholesterol-binding site within the IFN-γ receptor that is required for signal transduction.
The cytokine interferon-gamma (IFN-γ) is a master regulator of innate and adaptive immunity involved in a broad array of human diseases that range from atherosclerosis to cancer. IFN-γ exerts it signaling action by binding to a specific cell surface receptor, the IFN-γ receptor (IFN-γR), whose activation critically depends on its partition into lipid nanodomains. However, little is known about the impact of specific lipids on IFN-γR signal transduction activity. Here, a new conserved cholesterol (chol) binding motif localized within its single transmembrane domain is identified. Through direct binding, chol drives the partition of IFN-γR2 chains into plasma membrane lipid nanodomains, orchestrating IFN-γR oligomerization and transmembrane signaling. Bioinformatics studies show that the signature sequence stands for a conserved chol-binding motif presented in many mammalian membrane proteins. The discovery of chol as the molecular switch governing IFN-γR transmembrane signaling represents a significant advance for understanding the mechanism of lipid selectivity by membrane proteins, but also for figuring out the role of lipids in modulating cell surface receptor function. Finally, this study suggests that inhibition of the chol-IFNγR2 interaction may represent a potential therapeutic strategy for various IFN-γ-dependent diseases
Recommended from our members
Membrane Tension Orchestrates Rear Retraction in Matrix-Directed Cell Migration
In development, wound healing, and cancer metastasis, vertebrate cells move through 3D interstitial matrix, responding to chemical and physical guidance cues. Protrusion at the cell front has been extensively studied, but the retraction phase of the migration cycle is not well understood. Here, we show that fast-moving cells guided by matrix cues establish positive feedback control of rear retraction by sensing membrane tension. We reveal a mechanism of rear retraction in 3D matrix and durotaxis controlled by caveolae, which form in response to low membrane tension at the cell rear. Caveolae activate RhoA-ROCK1/PKN2 signaling via the RhoA guanidine nucleotide exchange factor (GEF) Ect2 to control local F-actin organization and contractility in this subcellular region and promote translocation of the cell rear. A positive feedback loop between cytoskeletal signaling and membrane tension leads to rapid retraction to complete the migration cycle in fast-moving cells, providing directional memory to drive persistent cell migration in complex matrices. © 2019 The AuthorsCell migration through 3D matrix is critical to developmental and disease processes, but the mechanisms that control rear retraction are poorly understood. Hetmanski et al. show that differential membrane tension allows caveolae to form at the rear of migrating cells and activate the contractile actin cytoskeleton to promote rapid retraction. © 2019 The Author
Caveolin-1 dolines form a distinct and rapid caveolae-independent mechanoadaptation system.
In response to different types and intensities of mechanical force, cells modulate their physical properties and adapt their plasma membrane (PM). Caveolae are PM nano-invaginations that contribute to mechanoadaptation, buffering tension changes. However, whether core caveolar proteins contribute to PM tension accommodation independently from the caveolar assembly is unknown. Here we provide experimental and computational evidence supporting that caveolin-1 confers deformability and mechanoprotection independently from caveolae, through modulation of PM curvature. Freeze-fracture electron microscopy reveals that caveolin-1 stabilizes non-caveolar invaginations-dolines-capable of responding to low-medium mechanical forces, impacting downstream mechanotransduction and conferring mechanoprotection to cells devoid of caveolae. Upon cavin-1/PTRF binding, doline size is restricted and membrane buffering is limited to relatively high forces, capable of flattening caveolae. Thus, caveolae and dolines constitute two distinct albeit complementary components of a buffering system that allows cells to adapt efficiently to a broad range of mechanical stimuli.We thank R. Parton (Institute for Molecular Biosciences, Queensland),
P. Pilch (Boston University School of Medicine) and L. Liu (Boston
University School of Medicine) for kindly providing PTRFKO cells and
reagents, S. Casas Tintó for kindly providing SH-Sy5y cells, P. Bassereau
(Curie Institute, Paris) for kindly providing OT setup, V. Labrador
Cantarero from CNIC microscopy Unit for helping with ImageJ analysis,
O. Otto and M. Herbig for providing help with RTDC experiments,
S. Berr and K. Gluth for technical assistance in cell culture, F. Steiniger
for support in electron tomography, and A. Norczyk Simón for providing
pCMV-FLAG-PTRF construct. This project received funding from the European Union Horizon 2020 Research and Innovation Programme
through Marie Sklodowska-Curie grant 641639; grants from the Spanish
Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033):
SAF2014-51876-R, SAF2017-83130-R co-funded by ‘ERDF A way
of making Europe’, PID2020-118658RB-I00, PDC2021-121572-100
co-funded by ‘European Union NextGenerationEU/PRTR’, CSD2009-
0016 and BFU2016-81912-REDC; and the Asociación Española Contra
el Cáncer foundation (PROYE20089DELP) all to M.A.d.P. M.A.d.P. is
member of the Tec4Bio consortium (ref. S2018/NMT¬4443; Comunidad
Autónoma de Madrid/FEDER, Spain), co-recipient with P.R.-C. of
grants from Fundació La Marató de TV3 (674/C/2013 and 201936-
30-31), and coordinator of a Health Research consortium grant from
Fundación Obra Social La Caixa (AtheroConvergence, HR20-00075).
M.S.-A. is recipient of a Ramón y Cajal research contract from MCIN
(RYC2020-029690-I). The CNIC Unit of Microscopy and Dynamic
Imaging is supported by FEDER ‘Una manera de hacer Europa’ (ReDIB
ICTS infrastructure TRIMA@CNIC, MCIN). We acknowledge the
support from Deutsche Forschungsgemeinschaft through grants
to M.M.K. (KE685/7-1) and B.Q. (QU116/6-2 and QU116/9-1). Work in
D.N. laboratory was supported by grants from the European Union
Horizon 2020 Research and Innovation Programme through Marie
Sklodowska-Curie grant 812772 and MCIN (DPI2017-83721-P). Work in
C.L. laboratory was supported by grants from Curie, INSERM, CNRS,
Agence Nationale de la Recherche (ANR-17-CE13-0020-01) and
Fondation ARC pour la Recherche (PGA1-RF20170205456). Work in
P.R.-C. lab is funded by the MCIN (PID2019-110298GB-I00), the EC (H20
20-FETPROACT-01-2016-731957). Work in X.T. lab is funded by the MICIN
(PID2021-128635NB-I00), ERC (Adv-883739) and La Caixa Foundation
(LCF/PR/HR20/52400004; co-recipient with P.R.-C.). IBEC is recipient of
a Severo Ochoa Award of Excellence from the MINECO. The funders had
no role in study design, data collection and analysis, decision to publish
or preparation of the manuscript. The CNIC is supported by the Instituto
de Salud Carlos III (ISCIII), the MCIN and the Pro CNIC Foundation, and is
a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded
by MICIN/AEI/10.13039/501100011033).S
G-CSFR Ubiquitination Critically Regulates Myeloid Cell Survival and Proliferation
The granulocyte colony-stimulating factor receptor (G-CSFR) is a critical regulator of granulopoiesis. Mutations in the G-CSFR in patients with severe congenital neutropenia (SCN) transforming to acute myelogenous leukemia (AML) have been shown to induce hypersensitivity and enhanced growth responses to G-CSF. Recent studies have demonstrated the importance of the ubiquitin/proteasome system in the initiation of negative signaling by the G-CSFR. To further investigate the role of ubiquitination in regulating G-CSFR signaling, we generated a mutant form of the G-CSFR (K762R/G-CSFR) which abrogates the attachment of ubiquitin to the lysine residue at position 762 of the G-CSFR that is deleted in the Δ716 G-CSFR form isolated from patients with SCN/AML. In response to G-CSF, mono-/polyubiquitination of the G-CSFR was impaired in cells expressing the mutant K762R/G-CSFR compared to cells transfected with the WT G-CSFR. Cells stably transfected with the K762R/G-CSFR displayed a higher proliferation rate, increased sensitivity to G-CSF, and enhanced survival following cytokine depletion, similar to previously published data with the Δ716 G-CSFR mutant. Activation of the signaling molecules Stat5 and Akt were also increased in K762R/G-CSFR transfected cells in response to G-CSF, and their activation remained prolonged after G-CSF withdrawal. These results indicate that ubiquitination is required for regulation of G-CSFR-mediated proliferation and cell survival. Mutations that disrupt G-CSFR ubiquitination at lysine 762 induce aberrant receptor signaling and hyperproliferative responses to G-CSF, which may contribute to leukemic transformation
Cellular Cytoskeleton Dynamics Modulates Non-Viral Gene Delivery through RhoGTPases
Although it is well accepted that the constituents of the cellular microenvironment modulate a myriad of cellular processes, including cell morphology, cytoskeletal dynamics and uptake pathways, the underlying mechanism of how these pathways influence non-viral gene transfer have not been studied. Transgene expression is increased on fibronectin (Fn) coated surfaces as a consequence of increased proliferation, cell spreading and active engagement of clathrin endocytosis pathway. RhoGTPases mediate the crosstalk between the cell and Fn, and regulate cellular processes involving filamentous actin, in-response to cellular interaction with Fn. Here the role of RhoGTPases specifically Rho, Rac and Cdc42 in modulation of non-viral gene transfer in mouse mesenchymal stem (mMSCs) plated in a fibronectin microenvironment was studied. More than 90% decrease in transgene expression was observed after inactivation of RhoGTPases using difficile toxin B (TcdB) and C3 transferase. Expression of dominant negative RhoA (RhoAT19N), Rac1(Rac1T17N) and Cdc42 (Cdc42T17N) also significantly reduced polyplex uptake and transgene expression. Interactions of cells with Fn lead to activation of RhoGTPases. However, further activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes (RhoAQ63L, Rac1Q61L and Cdc42Q61L) did not further enhance transgene expression in mMSCs, when plated on Fn. In contrast, activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes for cells plated on collagen I, which by itself did not increase RhoGTPase activation, resulted in enhanced transgene expression. Our study shows that RhoGTPases regulate internalization and effective intracellular processing of polyplexes that results in efficient gene transfer
The Dynamin Chemical Inhibitor Dynasore Impairs Cholesterol Trafficking and Sterol-Sensitive Genes Transcription in Human HeLa Cells and Macrophages
Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL) in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC) within the endolysosomal network. The measure of cholesterol esters (CE) further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER) was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2), 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR), and low-density lipoprotein receptor (LDLR). The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol
Super Resolution Microscopy Reveals that Caveolin-1 Is Required for Spatial Organization of CRFB1 and Subsequent Antiviral Signaling in Zebrafish
10.1371/journal.pone.0068759PLoS ONE87-POLN
- …