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Neurocalcin regulates nighttime sleep and
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James Jepson*

Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology,
London, United Kingdom

Abstract Sleep-like states in diverse organisms can be separated into distinct stages, each with

a characteristic arousal threshold. However, the molecular pathways underlying different sleep

stages remain unclear. The fruit fly, Drosophila melanogaster, exhibits consolidated sleep during

both day and night, with night sleep associated with higher arousal thresholds compared to day

sleep. Here we identify a role for the neuronal calcium sensor protein Neurocalcin (NCA) in

promoting sleep during the night but not the day by suppressing nocturnal arousal and

hyperactivity. We show that both circadian and light-sensing pathways define the temporal window

in which NCA promotes sleep. Furthermore, we find that NCA promotes sleep by suppressing

synaptic release from a dispersed wake-promoting neural network and demonstrate that the

mushroom bodies, a sleep-regulatory center, are a module within this network. Our results advance

the understanding of how sleep stages are genetically defined.

DOI: https://doi.org/10.7554/eLife.38114.001

Introduction
Sleep is a widely conserved behavior that influences numerous aspects of brain function, including

neuronal development (Kayser et al., 2014), clearance of metabolic waste (Xie et al., 2013), synap-

tic plasticity (Havekes et al., 2016; Kuhn et al., 2016; Li et al., 2017; Yang et al., 2014), and com-

plex behaviors (Kayser et al., 2015; Kayser et al., 2014). The fruit fly, Drosophila, exhibits a sleep-

like state characterized by immobility, altered posture and elevated arousal threshold during both

day and night (Hendricks et al., 2000; Shaw et al., 2000). Similarly to mammals, sleep in Drosophila

is regulated by circadian and homeostatic processes (Huber et al., 2004; Liu et al., 2014). Further-

more, just as human sleep can be separated into stages of differing arousal thresholds (REM and

three non-REM sleep stages) (Rechtschaffen et al., 1966), sleep in Drosophila also varies in intensity

throughout the day/night cycle, with night sleep having a higher arousal threshold relative to day

sleep (Faville et al., 2015; van Alphen et al., 2013).

The molecular mechanisms by which sleep is partitioned into stages remain poorly understood. In

Drosophila, mutations in a select number of genes modulate either day or night sleep, suggesting

that distinct genetic pathways may promote or inhibit these sleep stages (Ishimoto et al., 2012;

Tomita et al., 2015). Yet it is still unclear which properties of sleep/wake these genes are influenc-

ing, and how the timing of when they affect sleep is controlled.

The identification of new genes selectively impacting day or night sleep will help address such

questions. Previously, large-scale screens of EMS-mutagenized (Cirelli et al., 2005;

Stavropoulos and Young, 2011), P-element insertion (Koh et al., 2008), or transgenic RNAi knock-

down lines (Rogulja and Young, 2012) have been used to identify Drosophila sleep mutants. How-

ever, such approaches are highly laborious, requiring screening of thousands of fly lines to identify a

limited number of bona fide sleep genes. Thus, targeted screening strategies of higher efficiency

may represent a useful complement to unbiased high-throughput, yet low yield, methodologies.
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We uncovered a novel sleep-relevant gene in Drosophila using a guilt-by-association strategy.

Our approach was based on comparative phenotyping of human and Drosophila mutants of homolo-

gous genes, KCTD17/insomniac, both of which encode a Cullin-3 adaptor protein involved in the

ubiquination pathway (Mencacci et al., 2015; Pfeiffenberger and Allada, 2012; Stavropoulos and

Young, 2011). In humans, a KCTD17 mutation has been associated with myoclonus dystonia, a dis-

order characterized by repetitive movements, contorted postures and non-epileptic myoclonic jerks

in the upper body (Mencacci et al., 2015). In Drosophila, null or hypomorphic mutations in the

KCTD17 homolog insomniac result in profound reductions in sleep (Pfeiffenberger and Allada,

2012; Stavropoulos and Young, 2011).

Genotype-to-phenotype relationships arising from conserved cellular pathways can differ substan-

tially between divergent species such as Drosophila and humans (Lehner, 2013; McGary et al.,

2010; Wangler et al., 2017). In this context, it is interesting to note that dystonia in humans and

sleep in Drosophila are linked by a common cellular mechanism: synaptic downscaling. This process

occurs during sleep in both mammals and Drosophila, and is suppressed at cortico-striatal synapses

in murine dystonia models (Bushey et al., 2011; Calabresi et al., 2016; Gilestro et al., 2009;

Martella et al., 2009; Tononi and Cirelli, 2014). Thus, we hypothesized that homologs of other

human dystonia-associated genes might also influence sleep in Drosophila.

To test this hypothesis, we examined whether homologs of dystonia-associated genes influenced

sleep in Drosophila. Through this strategy we identified a previously unappreciated role for the

HPCA/Hippocalcin homolog Neurocalcin (Nca) in regulating night sleep. Hippocalcin and NCA are

neuronal calcium sensors, cytoplasmic proteins that bind calcium via EF hand domains and translo-

cate to lipid membranes via a calcium-dependent myristoylation switch. This in turn alters interac-

tions with membrane-bound proteins such as ion channels and receptors (Braunewell et al., 2009;

Burgoyne and Haynes, 2012). In murine hippocampal neurons, Hippocalcin facilitates the slow

afterhyperpolarisation (a calcium-dependent potassium current) (Tzingounis et al., 2007), and gluta-

mate receptor endocytosis during LTD (Jo et al., 2010; Palmer et al., 2005). In humans, rare mis-

sense and null mutations in HPCA have been linked to DYT2 primary isolated dystonia, a

hyperkinetic movement disorder affecting the upper limbs, cervical and cranial regions (Atasu et al.,

2018; Carecchio et al., 2017; Charlesworth et al., 2015). Drosophila NCA has been shown to be

expressed in synaptic regions throughout the fly brain (Teng et al., 1994). However, the neuronal

and organismal functions of NCA have remained elusive. Here, we demonstrate a role for NCA in

suppressing nocturnal arousal and locomotor activity in Drosophila, thus facilitating nighttime sleep.

Results

Identification of neurocalcin as a sleep-promoting factor
Drosophila NCA is highly homologous to the mammalian neuronal calcium sensor Hippocalcin, shar-

ing >90% amino-acid identity (Figure 1—figure supplement 1). To test whether Nca influences

sleep or wakefulness we initially used transgenic RNAi. Using the pan-neuronal driver elav-Gal4, we

found that neuronal expression of three independent RNAi lines targeting Nca mRNA (kk108825,

hmj21533 and jf03398; termed kk, hmj and jf respectively) reduced night sleep but not day sleep in

adult male flies housed under 12 hr light: 12 hr dark conditions (12L: 12D) at 25˚C (Figure 1—figure

supplement 2A–E), as measured by the Drosophila Activity Monitoring (DAM) system

(Pfeiffenberger et al., 2010). In this work we define a Drosophila sleep bout as �5 min of inactivity,

the common standard in the field (Pfeiffenberger et al., 2010).

We performed a series of experiments to further validate a specific role of NCA in promoting

night sleep. Sleep loss in flies expressing Nca RNAi correlated with significant reductions in Nca

expression (Figure 1—figure supplement 2F). In contrast, expression of the cg7646 locus, which

shares 5’ regulatory elements with Nca and encodes a neuronal calcium sensor more closely related

to mammalian Recoverin than Hippocalcin, was unaffected by Nca knockdown (Figure 1—figure

supplement 2A,G). Night-specific sleep loss following Nca knockdown was also observed in virgin

adult female flies and in male flies expressing the kk Nca RNAi using other pan-neuronal or broadly

expressed drivers (Figure 1—figure supplement 2H–J), whereas knockdown of cg7646 by RNAi did

not impact night sleep (Figure 1—figure supplement 2K).
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Sleep architecture in Drosophila is generally studied in 12L: 12D conditions. Interestingly, we

found that night sleep in Nca knockdown males appeared even further reduced under short photo-

period conditions (8L: 16D) (Figure 1A). Similarly to 12L: 12D, in 8L: 16D day sleep was unaffected

whilst night sleep was reduced (Figure 1A–C), due to fragmentation of consolidated sleep bouts

during the middle of the night (Figure 1—figure supplement 3). Nocturnal sleep loss in 8L: 16D

was again observed in flies expressing the independent hmj and jf Nca RNAi lines in neurons (Fig-

ure 1—figure supplement 4A–C), but not in flies expressing the kk Nca RNAi line in muscle cells

(Figure 1—figure supplement 4D–F), supporting a role for NCA in neurons.

Given the limited spatial resolution of the DAM system, which measures activity via a single infra-

red beam, we undertook a higher resolution analysis of sleep using a video-tracking method - the

DART (Drosophila ARousal Tracking) system (Faville et al., 2015). DART recordings confirmed

night-specific sleep loss in in Nca knockdown flies housed under 8L: 16D (Figure 1D–F).

To test whether sleep loss caused by neuronal Nca knockdown flies was due to an indirect effect

on the circadian clock, we examined whether Nca knockdown altered circadian patterns of locomo-

tor activity in constant dark (DD) conditions. Importantly, knockdown of Nca in neurons did not alter

circadian rhythmicity (Figure 1—figure supplement 5). Furthermore, knockdown of Nca specifically

in clock neurons did not affect night sleep (see below). Thus, it is unlikely that sleep loss in Nca

knockdown flies is due to circadian clock dysfunction.

To provide further genetic evidence that NCA is a sleep-regulatory factor, we generated three

independent Nca null alleles by replacing the entire Nca locus (including 5’ and 3’ UTRs) with a mini-

white+ sequence using ends-out homologous recombination (Baena-Lopez et al., 2013). The mini-

white+ is flanked by loxP sites, allowing removal by Cre recombinase and leaving single attP and

loxP sites in place of the Nca locus (Figure 1—figure supplement 6A–C). As expected, no Nca

mRNA expression was detected in homozygotes for the deleted Nca locus (Figure 1—figure sup-

plement 6D–E). Thus, we term these alleles NcaKO1-3 (Nca knockouts 1–3). Following outcrossing

into an isogenic iso31 control background, male homozygotes and transheterozygotes for the three

Nca knockout alleles were viable to the adult stage and exhibited normal day sleep but reduced

night sleep, as measured by both DAM and DART systems (Figure 1G–L, Figure 1—figure supple-

ment 7), similarly to Nca knockdown flies.

By examining locomotor patterns in individual flies using the DART system, we found that NcaKO1

males consistently displayed prolonged activity relative to controls following lights-off and frequent

bouts of movement even in the middle of the night – a period of quiescence in iso31 controls

(Figure 1M,N). Video-based analysis of waking locomotor velocities revealed that loss of NCA led

to a reduction in average locomotor velocity across 24 hr (Figure 1—figure supplement 8A,B). This

was primarily driven by reduced locomotor activity during the evening activity peak and following

lights-off, suggesting loss of NCA mildly reduces peak levels of activity (Figure 1—figure supple-

ment 8C). In contrast, locomotor velocities during normally quiescent periods of the night were

greatly enhanced in NcaKO1 males compared to iso31 controls (Figure 1—figure supplement 8D),

consistent with a perturbed sleep state.

Collectively, the above data demonstrate that NCA promotes night sleep in Drosophila and does

so by acting in neurons. For simplicity, we use the kk Nca RNAi line and the NcaKO1 knockout line

for all subsequent experiments, and refer to these flies as NcaKD (Nca knockdown) and NcaKO (Nca

knockout) respectively.

NCA suppresses nighttime arousal
Sleep is characterized by a reduced responsiveness to stimuli (Campbell and Tobler, 1984). Recent

studies have shown that responsiveness during sleep stages in Drosophila is dynamically regulated,

with night sleep exhibiting a higher arousal threshold relative to day sleep (Faville et al., 2015;

van Alphen et al., 2013). Since knockout or knockdown of NCA specifically impacted night sleep,

we were interested to test whether NCA might also influence the arousal threshold during the night.

To do so, we used the DART system to subject NcaKD flies and respective controls to a mechanical

stimulus consisting of five consecutive 50 Hz vibrations of 200 ms duration, each separated by 800

ms, at either Zeitgeber Time (ZT) 4 (the middle of the day) or ZT16 (the middle of the night) in 8L:

16D (see Methods). This paradigm has previously been shown to induce startle responses the major-

ity of white mutant flies sleeping during the day, and a correspondingly smaller proportion when

applied during the night (Faville et al., 2015).
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Figure 1. Neurocalcin promotes night sleep. (A) Mean sleep levels measured using the DAM system under 8L: 16D conditions for adult male pan-

neuronal Nca knockdown flies (elav > kk) and associated controls (elav-Gal4 driver or kk RNAi transgene heterozygotes). (B–C) Median day (B) and night

(C) sleep levels in the above genotypes. n = 54–55. Data are presented as Tukey box plots. The 25th, Median, and 75th percentiles are shown. Whiskers

represent 1.5 x the interquartile range. Identical representations are used in all subsequent box plots. (D) Mean sleep levels measured using the DART

Figure 1 continued on next page
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At ZT4, we found that the majority of adult males from both control lines exhibited startle

responses in response to vibration stimuli, and that Nca knockdown did not significantly alter the

arousal threshold at this time point (Figure 2A,B). In contrast, the percentage of NcaKD flies

responding to vibration stimulus was significantly higher at ZT16 relative to both control lines

(Figure 2C,D). Furthermore, whereas the percentage of control flies responding to vibration stimulus

was significantly higher during the day compared to the night (elav > + and + > kk: p<0.0005, Bino-

mial test with Bonferonni correction for multiple comparisons), there was no significant day/night dif-

ference in responsiveness in NcaKD flies (p=0.1). Similar results were also observed in NcaKO flies

(Figure 2E,F). These data suggest that NCA is a molecular regulator of nighttime arousal in

Drosophila.

Light-sensing and circadian pathways define when NCA promotes sleep
The night-specificity of sleep loss and heightened arousal in NcaKO and NcaKD flies prompted us to

test whether circadian and/or light-sensing pathways determine when NCA impacts sleep. Initially,

we examined sleep patterns in NcaKD flies under DD conditions, in which the circadian clock alone

distinguishes subjective day from night. Interestingly, in DD robust sleep loss in NcaKD flies was still

restricted to the subjective night (Figure 3A,B). These data suggest that the circadian clock inter-

sects with NCA and demonstrate that sleep loss in NcaKD flies is not simply due to darkness-induced

hyperactivity.

To confirm that the circadian clock influences NCA’s sleep-promoting role, we analyzed sleep in

NcaKD flies under arrhythmic conditions. In a timeless knockout (timKO) background in DD

(Lamaze et al., 2017), where the clock no longer demarcates subjective day from night, sleep loss in

NcaKD flies was observed throughout the 24 hr dark period (Figure 3C,D). Intriguingly, in a timKO

background in 8L: 16D conditions, significant sleep loss in NcaKD flies was observed during the night

(Figure 3E,F), but not during the day (elav > kk, timKO vs elav > +, timKO: p=0.75, Kruskal-Wallis test

with Dunn’s post-hoc test). Thus, light is also capable of inhibiting sleep loss in NcaKD flies.

Figure 1 continued

system in 8L: 16D conditions for male adult pan-neuronal Nca knockdown flies (elav > kk) and associated controls. (E–F) Median day (E) and night (F)

sleep levels in the above genotypes. n = 20 per genotype. (G) Mean sleep levels in 8L: 16D conditions for NcaKO adult males and iso31 controls

measured using the DAM. (H–I) Median day (H) and night (I) sleep levels in the above genotypes. n = 32 per genotype. (J) Mean sleep levels in 8L: 16D

conditions for NcaKO adult males and iso31 controls measured by DART. (K–L) Median day (K) and night (L) sleep levels in the above genotypes. n = 16

per genotype. (M–N) The longitudinal movement for individual iso31 (M) and NcaKO (N) flies are shown as rows of traces plotting vertical position (Y-

axis) over 24 hr (X-axis) under 8L: 16D condition. ns (not significant) - p>0.05, **p<0.01, ***p<0.001, Kruskal-Wallis test with Dunn’s post-hoc test (B–C,

E–F) or Mann-Whitney U-test (H–I, K–L).

DOI: https://doi.org/10.7554/eLife.38114.002

The following source data and figure supplements are available for figure 1:

Source data 1. Sleep, velocity, rhythmicity data and gene expression data from Nca knockdown and knockout flies relating to Figure 1 and associated

figure supplements.

DOI: https://doi.org/10.7554/eLife.38114.011

Figure supplement 1. Human Hippocalcin and Drosophila Neurocalcin are highly homologous neuronal calcium sensors.

DOI: https://doi.org/10.7554/eLife.38114.003

Figure supplement 2. Pan-neuronal knockdown of Nca using independent RNAi lines causes night sleep loss.

DOI: https://doi.org/10.7554/eLife.38114.004

Figure supplement 3. Reduced consolidated sleep in NcaKD flies.

DOI: https://doi.org/10.7554/eLife.38114.005

Figure supplement 4. Pan-neuronal expression of independent Nca RNAi lines results in night sleep loss in 8L: 16D conditions.

DOI: https://doi.org/10.7554/eLife.38114.006

Figure supplement 5. Nca knockdown does not alter circadian rhythmicity.

DOI: https://doi.org/10.7554/eLife.38114.007

Figure supplement 6. Generation of Nca null alleles using ends-out homologous recombination.

DOI: https://doi.org/10.7554/eLife.38114.008

Figure supplement 7. Independent combinations of Nca knockout alleles exhibit night sleep loss.

DOI: https://doi.org/10.7554/eLife.38114.009

Figure supplement 8. Locomotor velocities in Nca knockout flies.

DOI: https://doi.org/10.7554/eLife.38114.010
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Consistent with this finding, under constant light (LL) conditions, in which the circadian clock

becomes arrhythmic due to light-dependent degradation of Timeless (Hunter-Ensor et al., 1996;

Koh et al., 2006; Peschel et al., 2006), sleep loss in NcaKD flies was completely suppressed

(Figure 3G,H). From the above data we draw two conclusions. Firstly, that the circadian clock is not

required for NCA to regulate sleep per se, but instead defines when NCA promotes sleep. Secondly,

that light-sensing pathways suppress enhanced wakefulness resulting from reduced NCA expression.
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Figure 2. NCA reduces responsiveness to stimuli at night under 8L: 16D conditions. (A, C) Locomotor activity in twenty representative control (+ > kk)

and NcaKD (elav > kk) adult male flies at either ZT4 (A) or ZT16 (C), as measured using the DART system. X-axis denotes 300 s before and after a

vibration stimulus (red dotted line). Y-axis represents movement of individual flies in a binary manner (1 = movement, marked by blue dotted line for

one fly; 0 = immobility). Only flies that were immobile for five mins preceding the stimulus were selected for analysis. (B, D) Percentage of NcaKD and

control flies responding or not responding to vibration stimulus at either ZT4 (B) or ZT16 (D). ZT4: elav > +: n = 24, + > kk: n = 33, elav > kk: n = 33.

ZT16: elav > +: n = 23, + > kk: n = 30, elav > kk: n = 29. (E, F) Percentage of NcaKO and iso31 control flies responding or not responding to vibration

stimulus at either ZT4 (E) or ZT16 (F). ZT4: iso31: n = 48, NcaKO: n = 53. ZT16: iso31: n = 48, NcaKO: n = 44. ns – p>0.05, **p<0.01, ***p<0.001, Binomial

test with Bonferonni correction for multiple comparisons.

DOI: https://doi.org/10.7554/eLife.38114.012

The following source data is available for figure 2:

Source data 1. Proportion of Nca knockdown and knockout flies responding to mechanical stimuli.

DOI: https://doi.org/10.7554/eLife.38114.013
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We thus sought to determine which light-sensing pathways restrict sleep loss in NcaKD flies to the

night. We reasoned that removing relevant photoreceptive molecules, cells or transduction pathways

might restore sleep loss in NcaKD flies during LL. Ablation of photoreceptor cells through expression

of the pro-apoptotic gene hid (gmr-hid) did not alter sleep in NcaKD flies in LL (Figure 3I,J). In con-

trast, using a loss of function allele of cry (cry02), we found that loss of CRY in LL resulted in a small

but significant loss of sleep in NcaKD flies (Figure 3K,L). CRY is a blue-light photoreceptor and has
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Figure 3. Circadian clock and light-sensing pathways define when NCA promotes sleep. (A–B) Mean sleep levels in NcaKD and control adult males

across 24 hr in constant-dark (DD) conditions (A), and total median sleep levels in the above genotypes (B). n = 44–47. Note the reduced sleep in the

subjective night in NcaKD relative to control adult males, but not the day. (C–D) Mean sleep levels in NcaKD and control adult males across 24 hr in DD

conditions in a timeless knockout (timKO) background (C), and total median sleep levels (D). n = 32–39. (E–F) Mean sleep levels in NcaKD and control

adult males across 24 hr in 8L: 16D conditions in a timKO background (E), median night sleep levels (F). n = 22–26. (G–H) Mean sleep levels in NcaKD

and control adult males across 24 hr in constant-light (LL) conditions (G), and total median sleep levels (H). n = 44–47. (I–J) Mean sleep levels in NcaKD

and control adult males across 24 hr in LL conditions in a gmr-hid background (I), and total median sleep levels (J). elav > kk, gmr-hid/+: n = 51; + > kk,

gmr-hid/+: n = 48; elav > +, gmr-hid/+: n = 24. (K–L) Mean sleep levels in NcaKD and control adult males across 24 hr in LL conditions in a

cryptochrome null (cry02) background (K), and total median sleep levels in the above genotypes (L). n = 61–72. Note the small but consistent reduction

in sleep in NcaKD, cry02 males (K), leading to a significant decrease in total median sleep levels relative to controls (L). ns - p>0.05, ***p<0.001, as

compared to driver and RNAi alone controls via Kruskal-Wallis test with Dunn’s post-hoc test.

DOI: https://doi.org/10.7554/eLife.38114.014

The following source data is available for figure 3:

Source data 1. Sleep levels in Nca knockdown flies under varying environmental and genetic conditions.

DOI: https://doi.org/10.7554/eLife.38114.015
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dual roles in synchronization of the circadian clock by light and light-dependent regulation of clock

cell excitability (Fogle et al., 2011; Stanewsky et al., 1998). One or both of these pathways may

therefore modulate the timing of sleep loss in NcaKD flies. However, the reduction in sleep in NcaKD,

cry02 flies in LL is lower in magnitude compared to NcaKD flies in DD or 8L: 16D (Figures 1B and

3A), suggesting that additional light-sensing pathways act in concert with CRY to inhibit wakefulness

in NcaKD flies in the presence of light. The restoration of clock function in cry02 homozygotes in LL

may also contribute to sleep loss in NcaKD, cry02 flies under LL (Stanewsky et al., 1998).

NCA acts in two neuronal subpopulations to promote night sleep
Does NCA act in restricted neuropil regions to promote night sleep? To address this question, we

used transgenic RNAi to knock down Nca expression in sleep relevant neuronal subpopulations

defined by numerous promoter-Gal4 driver lines (Figure 4—figure supplement 1). These include

clock neurons, neurotransmitter- and receptor-specific subtypes, fan-shaped body, mushroom body

(MB), mechano-sensory, and visual pathway neurons (Donlea et al., 2011; Guo et al., 2018;

Jenett et al., 2012; Jiang et al., 2016; Joiner et al., 2006; Lamaze et al., 2018; Lamaze et al.,

2017; Liu et al., 2014; Pitman et al., 2006; Seidner et al., 2015; Sitaraman et al., 2015). However,

in contrast to broadly expressed drivers (elav-, nsyb- and inc-Gal4), Nca knockdown in neurotrans-

mitter- or neuropil-specific subsets was insufficient to significantly reduce night sleep (Figure 4—fig-

ure supplement 1A).

These results suggested that NCA might act in multiple neuropil regions to modulate sleep. Con-

sistent with this hypothesis, we generated a series of driver line combinations and found that Nca

knockdown using two enhancer-Gal4 lines (R72C01 – an enhancer in the Dop1R1 locus, and R14A05

– an enhancer in the single-minded locus; we refer to these drivers as C01 and A05 respectively)

strongly reduced night sleep in 8L: 16D conditions (Figure 4A,B) (Jenett et al., 2012). Nca knock-

down using either enhancer alone did not affect night sleep (Figure 4—figure supplement 2A–D),

nor in combination with dopaminergic, Dop1R1-expressing or cry-expressing neurons, or compo-

nents of the anterior visual pathway (Figure 4—figure supplement 1B).

The above data indicate that NCA expression in both C01- and A05-neurons is necessary for nor-

mal levels of night sleep. Similarly to pan-neuronal NcaKD flies, knockdown of Nca in C01- and A05-

neurons also resulted in sleep loss during the subjective night in DD (Figure 4C,D), no sleep loss in

LL (Figure 4E,F), no alteration in daytime arousal threshold (Figure 4G), and a reduced arousal

threshold during the night (Figure 4H). Thus, we were able to recapitulate the sleep/arousal pheno-

types of NcaKD flies by combinatorial Nca knockdown in C01- and A05-neurons.

The A05 enhancer drives expression in approximately 70 neurons (70.3 ± 4.7, n = 3), as quantified

using a fluorescent nuclear marker (Barolo et al., 2004). These include a subset of MB Kenyon cells

(MB-KCs), a cluster of cell bodies adjacent to the anterior ventrolateral protocerebrum (AVP), and

two visual domains: the optic lobe (OL) and anterior optic tubercle (AOTU) (Figure 5A). The C01

enhancer drives expression in approximately 240 neurons (239.7 ± 7.8, n = 3) which encompass MB-

KCs as well as neurons projecting to the MB g-lobes, the antennal mechanosensory and motor cen-

ter (AMMC), and the superior medial protocerebrum (SMP) (Figure 5B). Both drivers label additional

cells of unknown identity.

The shared expression of C01 and A05 within the MBs raised the possibility that sleep loss in

C01/A05 >Nca RNAi flies was due to strong NCA knockdown in neurons labelled by both enhancers.

If so, driving Nca RNAi with two copies of either C01 or A05 should mimic sleep loss in C01/

A05 > Nca RNAi flies. However, this was not the case (Figure 5—figure supplement 1). Thus, NCA

is required in two non-overlapping neuronal populations defined by the C01 and A05 enhancers to

promote night sleep. Furthermore, since sleep-promoting NCA activity can largely be mapped to

approximately 310 neurons but not to wider populations such as cholinergic or GABAergic neurons

(Figure 4—figure supplement 1), these results argue that sleep loss in Nca knockdown and knock-

out flies is not simply due to broad neuronal dysfunction.

NCA functions in the mushroom bodies to regulate sleep and arousal
Detailed examination within MB-KCs using standardized confocal images from the Virtual Fly Brain

indicated that the C01 and A05 enhancers label non-overlapping regions of the MB, with C01

expressed in the ab-KCs, and A05 expressed in a’b’-KCs (Figure 5 and Figure 5—figure
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Figure 4. NCA acts in a two distinct neural subpopulations to regulate night sleep. (A–F) Sleep patterns in adult male flies with Nca knockdown (using

the kk Nca RNAi) in two neural domains defined by the A05- and C01-Gal4 drivers in varying light/dark regimes, compared to controls. (A–B) A: mean

sleep patterns in 8L: 16D conditions. B: median night sleep in Nca knockdown flies compared to heterozygote drivers and transgene alone controls.

+ > kk: n = 80; C01/A05 > +: n = 42; C01/A05 > kk: n = 71. (C–D) Mean sleep patterns (C) and median subjective night sleep (D) in constant dark (DD)

conditions. + > kk: n = 64; C01/A05 > +: n = 47; C01/A05 > kk: n = 51. (E–F) Mean sleep patterns (E) and median total sleep (F) in constant light (LL)

conditions. + > kk: n = 76; C01/A05 > +: n = 26; C01/A05 > kk: n = 28. (G–H) Percentage of C01/A05 > kk and control flies responding or not

responding to vibration stimuli at either ZT4 (G; C01/A05 > kk, n = 38, + > kk, n = 61 and C01/A05 > +, n = 26) or ZT16 (H; C01/A05 > kk, n = 24,

+ > kk, n = 54 and C01/A05 > +, n = 28) under 8L: 16D conditions. ns – p>0.05, *p<0.05, **p<0.01, ***p<0.001, compared to driver and RNAi alone

controls, Kruskal-Wallis test with Dunn’s post-hoc test (B, D, F) or Binomial test with Bonferonni correction for multiple comparisons (G–H).

DOI: https://doi.org/10.7554/eLife.38114.016

The following source data and figure supplements are available for figure 4:

Source data 1. Sleep levels and proportion of flies responding to mechanical stimuli following Nca knockdown in C01- and A05-neurons or other spe-

cific neuronal subtypes, relating to Figure 4 and associated figure supplements.

DOI: https://doi.org/10.7554/eLife.38114.019

Figure supplement 1. Transgenic RNAi-based mini-screen to identify key NCA-expressing neurons.

Figure 4 continued on next page
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supplement 2A). Given the known sleep regulatory role of the MB-KCs (Joiner et al., 2006;

Pitman et al., 2006; Sitaraman et al., 2015), we examined whether the MB-KCs were an important

constituent of either the C01 and A05 expression domains.

Similarly to Nca knockdown in C01- and A05-neurons alone (Figure 4—figure supplement 2A–

D), Nca knockdown in the MB-KCs using the ok107-Gal4 driver did not alter day or night sleep in 8L:

16D (Figure 5—figure supplement 2B,C). However, simultaneous knockdown of Nca in ok107- and

A05-neurons significantly reduced night sleep (Figure 5—figure supplement 2D,E), whereas Nca

knockdown in both ok107- and C01-neurons did not (Figure 5—figure supplement 2F,G). Since

Nca knockdown in ok107- and A05-neurons partially phenocopies the sleep-inhibiting effect of Nca

knockdown in C01- and A05-neurons, these data suggest that the MB-KCs are a relevant component

of the C01 expression domain.

We were also interested to examine whether NCA might act in the MB-KCs to regulate nighttime

arousal threshold as well as sleep. Using the DART system, we found that Nca knockdown in either

C01-neurons or in the MB-KCs (using ok107-Gal4) significantly increased the number of flies aroused

by mechanical stimuli during the night but not the day (Figure 6A–D). Since the MB ab-KCs are

labelled by both the ok107-Gal4 and C01-Gal4 drivers, the above data collectively suggest that

NCA acts within the MB ab-KCs to suppress nocturnal arousal, and that additional circuits within the

A05-positive domain are required in concert with C01-neurons (including MB ab-KCs) to drive noc-

turnal hyperactivity when Nca expression is reduced.

NCA inhibits synaptic output in a dark-dependent manner
We next examined whether NCA influences the excitability of C01- and A05-neurons. To do so, we

expressed a genetically encoded fluorescent indicator of neurotransmitter release, UAS-synapto-

pHluorin (spH), in C01- and A05-neurons with or without Nca RNAi. spH localizes to synaptic vesicles

and increases in fluorescence in a pH-dependent manner upon vesicle fusion with the presynaptic

membrane, providing an optical read-out of neurotransmitter release (Miesenböck, 2012). We mea-

sured spH fluorescence in four neuropil regions prominently labelled by the C01- and A05-drivers:

the MB ab-lobes, the antennal mechanosensory and motor center (AMMC), presynaptic innervations

of the MB g-lobes, and the superior medial protocerebrum (SMP). At ZT9-11 in 8L: 16D conditions,

Nca knockdown in C01- and A05-neurons resulted in significantly enhanced synaptic release from

the MB ab-lobes and the AMMC (Figure 7A,B) but not the MB g-lobe region or the SMP

(Figure 7C,D), demonstrating that NCA inhibits synaptic release from a subset of C01- and A05-neu-

rons and supporting a physiological role for NCA in the MB ab-lobes.

Since Nca knockdown in C01- and A05-neurons reduces night sleep in 8L: 16D but not in LL con-

ditions (Figure 4A–B,E–F), we were interested to test whether the above increases in synaptic

release were suppressed in LL. Indeed, at Circadian Time (CT) 9–11 in LL conditions, Nca knockdown

in C01- and A05-neurons did not enhance synaptic release from the MB ab-lobes, the MB g-lobe

region or the SMP, and surprisingly, reduced synaptic release from the AMMC (Figure 7E–H). Thus,

light-sensing pathways suppress both sleep loss (Figure 4E,F) and elevated synaptic release in the

MB ab-lobes and AMMC following Nca knockdown in C01- and A05-neurons.

NCA acts in wake-promoting neurons
Our results suggested a model in which loss of NCA causes aberrant excitation of a neural network

that promotes wakefulness in the absence of light. This model yields two predictions. Firstly, that

artificial activation of C01- and A05-neurons should promote wakefulness. Secondly, that reducing

excitability of C01- and A05-neurons should suppress sleep loss in Nca knockdown flies.

To test our first prediction, we stimulated C01- and A05-neurons by expressing the temperature-

sensitive cation channel TrpA1 in either neuronal subset or both and shifting flies from a non-activat-

ing temperature (22˚C) to an activating temperature (27˚C) (Hamada et al., 2008) (Figure 8A). At

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.38114.017

Figure supplement 2. Nca knockdown in C01- or A05-neurons alone does not significantly alter sleep.

DOI: https://doi.org/10.7554/eLife.38114.018
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Figure 5. Distribution of A05- and C01-neurons in the adult Drosophila brain. (A–B) Confocal z-stacks of adult male brains expressing genetically-

encoded fluorophores labelling either neuronal processes (CD4::TdTom or CD8::GFP) or nuclei (Red-stinger) under the A05- (A) or C01-Gal4 (B) drivers.
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ventrolateral protocerebrum. SMP: superior medial protocerebrum.

DOI: https://doi.org/10.7554/eLife.38114.020

The following source data and figure supplements are available for figure 5:

Source data 1. Sleep levels following Nca knockdown in C01-, A05- or ok107-neurons (or combinations of), relating to Figure 5—figure supplements

1 and 2.

DOI: https://doi.org/10.7554/eLife.38114.023

Figure supplement 1. Nca knockdown using homozygous C01- or A05-Gal4 drivers does not affect night sleep.

Figure 5 continued on next page
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the non-activating temperature, over-expression of TrpA1 in either neuronal population or both did

not affect sleep (Figure 8B). At the activating temperature, excitation of A05-neurons did not alter

night sleep (Figure 8C,D). In contrast, excitation of C01-neurons profoundly reduced night sleep

(Figure 8C,D) as well as day sleep (Figure 8C). Interestingly, simultaneous activation of C01- and

A05-neurons further reduced night but not day sleep relative to activation of C01-neurons alone,

despite activation of A05-neurons alone having no impact on sleep in 8L: 16D (Figure 8C,D). C01-

and A05-neurons thus synergistically interact to modulate night sleep.

To test our second prediction, we over-expressed a non-inactivating outward rectifying potassium

channel (dORKDC2) in C01- and A05-neurons with and without Nca knockdown via RNAi. Here,

expression of dORKDC2 is predicted to suppress neuronal firing by hyperpolarizing the resting mem-

brane potential (Nitabach et al., 2002; Park and Griffith, 2006). Silencing C01- and A05-neurons

with dORKDC2 in an otherwise wild type background did not alter day or night sleep levels

(Figure 8E,F; p>0.99 compared to dORKDC2/+controls, Kruskal-Wallis test with Dunn’s post-hoc

test). However, consistent with the above prediction, expression of dORKDC2 in concert with Nca

RNAi significantly suppressed night sleep loss relative to male flies expressing Nca RNAi alone or

alongside an innocuous transgene (UAS-FRT-stop-FRT-GFP) (p<0.0005). Thus, NCA promotes night

sleep by limiting synaptic output from arousal- and wake-promoting neurons within the C01- and

A05-Gal4 domains that include the MB ab-KCs.

Discussion
Human sleep can be partitioned into stages characterized by unique electroencephalographic signa-

tures and differing arousal thresholds (Rechtschaffen et al., 1966; Rechtschaffen and Kales, 1968).

Across the day/night cycle, Drosophila sleep is similarly characterized by dynamic alterations in

arousal threshold, with day sleep associated with lower arousal thresholds relative to night sleep

(Faville et al., 2015; van Alphen et al., 2013). However, molecular pathways underlying distinct

sleep stages are poorly defined. Here we demonstrate a role for the neuronal calcium sensor NCA

as a regulator of nocturnal sleep and arousal, thus providing a novel entry point to address this

issue.

Previous genetic screens have identified an array of sleep-promoting factors in Drosophila

(Tomita et al., 2017). However, despite extensive circuit analyses, the complete neural substrates in

which these factors function have yet to be determined (Afonso et al., 2015; Rogulja and Young,

2012; Shi et al., 2014; Stavropoulos and Young, 2011; Tomita et al., 2015; Wu et al., 2014). Our

results are consistent with these findings and offer a tentative explanation for the difficulties in defin-

ing circuit requirements for sleep-relevant proteins in Drosophila. We show that NCA is not required

within a single cell-type or neuropil region to inhibit nighttime arousal and wakefulness. Instead,

sleep-relevant NCA activity is necessary within two distinct domains of the Drosophila nervous sys-

tem defined by the A05- and C01-Gal4 drivers (Jenett et al., 2012).

Ex vivo imaging demonstrates that Nca knockdown enhances synaptic output from subsets of

C01- and A05-neurons innervating the MB ab-lobes and the AMMC. Reversing this effect via

dORKDC2-mediated electrical silencing suppresses sleep loss in Nca knockdown flies, suggesting

that enhanced synaptic output from C01- and A05-neurons via drives nighttime wakefulness. We

note that while dORKDC2 expression does not grossly effect the development or axonal guidance of

particular clock neurons in Drosophila (Nitabach et al., 2002), prior work has shown that potassium

channel overexpression can reduce the viability of mammalian hippocampal neurons (Nadeau et al.,

2000). Thus, we cannot entirely rule out an effect of dORKDC2 expression that is secondary to elec-

trical silencing. However, adult-stage excitation via heat-activated TrpA1 channels reveals a clear

capacity of C01-neurons to promote wake during both day and night, whereas A05-neurons pro-

mote nighttime wakefulness only when C01-neurons are concurrently activated. Since this thermo-

genetic approach avoids unforeseen effects of chronic alterations in excitability on cellular processes

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.38114.021

Figure supplement 2. The mushroom bodies are a sleep-relevant subdomain within C01-neurons.

DOI: https://doi.org/10.7554/eLife.38114.022
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Figure 6. NCA acts in the mushroom bodies to regulate nocturnal arousal. (A–B) Percentage of adult male flies

expressing Nca RNAi (kk) in C01-neurons (C01 > kk) and control flies responding or not responding to vibration

stimulus at either ZT4 (day; A) or ZT16 (night; B). ZT4: C01 > +, n = 22, + > kk, n = 61, C01 > kk, n = 27. ZT16: C01

> +, n = 19, + > kk, n = 54, C01 > kk, n = 21. (C–D) Percentage of adult male flies expressing Nca RNAi (kk) in MB-

KCs (ok107 > kk) and control flies responding or not responding to vibration stimulus at either ZT4 (day; C) or

ZT16 (night; D). ZT4: ok107 > +, n = 26, + > kk, n = 47, ok107 > kk, n = 28. ZT16: ok107 > +, n = 26, + > kk,

n = 44, ok107 > kk, n = 27. ns – p>0.05, *p<0.05, ***p<0.001, Binomial test with Bonferonni correction for multiple

comparisons.

DOI: https://doi.org/10.7554/eLife.38114.024

The following source data is available for figure 6:

Source data 1. Proportion of flies responding to mechanical stimuli following Nca knockdown in C01- or ok107-

neurons.

DOI: https://doi.org/10.7554/eLife.38114.025
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Figure 7. NCA suppresses synaptic release in subsets of C01/A05-neurons during darkness. (A–D) Fluorescence of an optical reporter of synaptic

release (synapto-pHluorin, spH) in neuropil regions labelled by the C01- and A05-drivers, in control adult males (C01/A05 > spH) or following Nca

knockdown in C01- and A05-neurons (C01/A05 > spH, kk). Flies were housed under 8L: 16D conditions, in which Nca knockdown in C01- and A05-

neurons causes robust nighttime sleep loss. (E–G) spH fluorescence in control adult males or following Nca knockdown in C01- and A05-neurons (C01/

Figure 7 continued on next page

Chen et al. eLife 2019;8:e38114. DOI: https://doi.org/10.7554/eLife.38114 14 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.38114


(Depetris-Chauvin et al., 2011), the above data collectively support a model in which reduced NCA

activity in C01- and A05-neurons causes a mild elevation in neurotransmitter release from neuronal

subsets within the C01- and A05-domains. Reduced NCA activity in C01- or A05-neurons alone is

insufficient to promote wakefulness. Yet when NCA expression is inhibited in C01- and A05-neurons

simultaneously, the resulting enhancement of synaptic output within this wider network is sufficient

to reduce night sleep.

While the precise identities of the wake-promoting circuits within the C01- and A05-domains

remain enigmatic, our data suggests a role for NCA in the MB ab-lobes in suppressing arousal dur-

ing the night. The MB-KCs have been shown to exert a multifaceted influence on Drosophila sleep

(Joiner et al., 2006; Pitman et al., 2006; Sitaraman et al., 2015). Recent data has shown that

thermo-genetic activation of MB ab-lobes does not affect sleep levels (Sitaraman et al., 2015). Simi-

larly, we find that Nca knockdown in MB-KCs or in C01-neurons (which overlap in the MB ab-lobes)

does not impact sleep in 8L: 16D. Nonetheless, either manipulation is sufficient to reduce the arousal

threshold in the context of a mechanical stimulus. Thus, NCA plays dual functions in modulating

arousal and wakefulness, likely by acting in distinct circuits within the fly brain.

Two questions arise from these results. Firstly, how might NCA inhibit synaptic output? The mam-

malian NCA homolog Hippocalcin modulates neuronal excitability and plasticity through multiple

pathways. Hippocalcin facilitates NMDA receptor endocytosis during LTD and gates the slow after-

hyperpolarisation, a calcium-activated potassium current controlling spike frequency adaptation

(Andrade et al., 2012; Jo et al., 2010; Tzingounis et al., 2007). Recent data suggest that Hippocal-

cin also inhibits calcium influx through N- and P/Q-type voltage-gated calcium channels

(Helassa et al., 2017). Given the strong homology between Hippocalcin and NCA, it will be intrigu-

ing to test whether NCA limits excitatory synaptic input and reduces spike frequency and/or neuro-

transmitter release through similar pathways in Drosophila. Indeed, cell-type-specific expression of

homologous NCA-binding proteins may explain why synaptic output is enhanced in only a subset of

C01- and A05-neurons following Nca knockdown, despite previous results showing that NCA is

broadly expressed in the Drosophila brain (Teng et al., 1994).

Secondly, how is the sleep-promoting role of NCA limited to the night? Our results show that

both internal and external cues regulate when NCA impacts sleep. Nca knockdown reduces sleep

solely during the subjective night in DD, but throughout 24 hr in DD when the circadian clock is dis-

rupted. Thus, our data demonstrate a role for the clock in timing when NCA promotes sleep. How-

ever, light also acts in parallel as an environmental signal capable of suppressing enhanced

wakefulness when NCA activity is reduced, in part through the CRY photoreceptor. At the circuit-

level, our results suggest that constant light suppresses increased neurotransmitter release from neu-

rons in the MB ab-lobes and AMMC following Nca knockdown, further supporting a role for the MB

ab-KCs as a component of the neural network through which NCA influences sleep and suggesting

a potential contribution from neurons innervating the AMMC. Elucidating the identity of clock- and

light-regulated circuits (including CRY-expressing neurons) that gate when and whether NCA pro-

motes sleep will prove a fruitful avenue of future research. More broadly, our work provides a frame-

work to study how complex interactions between genes, neural circuits and the environment

influence a critical behavior such as sleep.

Figure 7 continued

A05 > spH, kk). Flies were housed in LL conditions, in which Nca knockdown in C01- and A05-neurons has no effect on sleep levels. In each panel,

representative confocal images of spH fluorescence (left) and mean fluorescent intensity (right, normalized to the mean of C01/A05 > spH controls) are

shown. Dots within dot plots represent individual brain hemisphere measurements. A-D: n = 22–24. E-H: n = 15–18. Neuropil regions are noted. MB:

mushroom body. AMMC: antennal mechanosensory motor center. SMP: superior medial protocerebrum. ns – p>0.05, *p<0.05, **p<0.01, ***p<0.001,

Mann-Whitney U-test.

DOI: https://doi.org/10.7554/eLife.38114.026

The following source data is available for figure 7:

Source data 1. Normalized synaptopHluorin fluorescence in specified neuropil regions (see Figure 7) in a wild-type background or following Nca

knockdown in C01- and A05-neurons, in either 8L: 16D or in constant light (LL).

DOI: https://doi.org/10.7554/eLife.38114.027
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(Drosophila
melanogaster)

kk108825 Vienna Drosophila
Resource Center

RRID:FlyBase_FBst0481000

Genetic reagent
(Drosophila
melanogaster)

y[1]v[1];
P{y[+t7.7] v[+t1.8]=TRiP.
HMJ21533}attP40

Bloomington
Stock Center

RRID:BDSC_54814

Continued on next page
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Figure 8. Sleep loss in Nca knockdown flies is caused by enhanced excitability of C01/A05-neurons. (A) Experimental paradigm for acute activation of

A05 or C01-neurons. 22˚C: non-activating temperature for TrpA1. 27˚C: activating temperature. Sleep levels were recorded over two days in 8L: 16D

conditions. (B–C) Mean sleep levels across 8L: 16D following expression of TrpA1 in A05-, C01- or A05- and C01-neurons (and associated controls) at

22˚C (B) or 27˚C (C). (D) Median change in night sleep levels (D night sleep) following the shift from 22˚C on day 1˚C to 27˚C on day 2. + > TrpA1:

n = 53, A05 > +: n = 23, A05 > TrpA1: n = 68, C01 > +: n = 24, C01 > TrpA1: n = 40, C01/A05 > +: n = 33, C01/A05 > TrpA1: n = 40. ns – p>0.05,

***p<0.001, as compared to TrpA1 or driver alone controls by Kruskal-Wallis test with Dunn’s post-hoc test (for C01 > TrpA1, A05 > TrpA1, or C01/

A05 > TrpA1 compared to controls) or Mann-Whitney U-test (for C01/A05 > TrpA1 compared to C01 > TrpA1). (E–F) Inhibition of C01/A05-neurons by

expressing dORKDC2 rescues sleep loss due to Nca knockdown, while expression of dORKDC2 does not change baseline sleep. Mean sleep patterns in

8L: 16D conditions are shown in (E). Median night sleep levels are shown in (F).+ > kk: n = 72, C01/A05 > +: n = 85, C01/A05 > kk: n = 95, C01/

A05 > dORKDC2, kk: n = 77, C01/A05 > kk, FRT-stop-FRT-GFP: n = 39, + > dORKDC2: n = 57, C01/A05 > dORKDC2: n = 73, C01/A05 > FRT-stop-FRT-

GFP: n = 49, + > FRT-stop-FRT-GFP: n = 36. ns – p>0.05, ***p<0.001, Kruskal-Wallis test with Dunn’s post-hoc test.

DOI: https://doi.org/10.7554/eLife.38114.028

The following source data is available for figure 8:

Source data 1. Sleep levels following excitation or inhibition of C01- and A05-neurons (simultaneously or in isolation), either in a wild type background

or in parallel to Nca knockdown.

DOI: https://doi.org/10.7554/eLife.38114.029
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(Drosophila
melanogaster)

y[1]
v[1];
P{y[+t7.7] v[+t1.8]=TRiP.
JF03398}attP2

Bloomington
Stock Center

RRID:BDSC_29461

Genetic reagent
(Drosophila
melanogaster)

w[*]; P{w[+mC]=ple-GAL4.F}3 Bloomington
Stock Center

RRID:BDSC_8848

Genetic reagent
(Drosophila
melanogaster)

w[1118];P{w[+mC]=ChAT-GAL4.7.4}19B/CyO,
P{ry[+t7.2]=sevRas1 .V12}FK1

Bloomington
Stock Center

RRID:BDSC_6798

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{w[+mW.hs]
=GawB}VGlut[OK371]

Bloomington
Stock Center

RRID:BDSC_26160

Genetic
reagent
(Drosophila
melanogaster)

P{w[+mC]=Gad1 GAL4.3.098}2/CyO Bloomington
Stock Center

RRID:BDSC_51630

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{w[+mC]
=Ddc-GAL4.L}4.3D

Bloomington
Stock Center

RRID:BDSC_7010

Genetic reagent
(Drosophila
melanogaster)

w[*]; P{w[+mC]
=GAL4 ninaE.GMR}12

Bloomington
Stock Center

RRID:BDSC_1104

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{w[+mC]
=Trh-GAL4.long}2

Bloomington
Stock Center

RRID:BDSC_38388

Genetic reagent
(Drosophila
melanogaster)

w[*]; P{w[+mC]=Tdc2 GAL4.C}2 Bloomington
Stock Center

RRID:BDSC_9313

Genetic reagent
(Drosophila
melanogaster)

w[*]; P{w[+mW.hs]=GawB}cv-c[C5] Bloomington
Stock Center

RRID:BDSC_30839

Genetic reagent
(Drosophila
melanogaster)

w[*];
P{w[+mW.hs]=GawB}
OK107 ey[OK107]/I
n(4)ci[D], ci[D] pan
[ciD] sv[spa-pol]

Bloomington
Stock Center

RRID:BDSC_854

Genetic reagent
(Drosophila
melanogaster)

y[1]
w[1118]; PBac{w[+mC]
=5HPw[+]}Nca[A502]

Bloomington
Stock Center

RRID:BDSC_16130

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR23E10-GAL4}attP2

Bloomington
Stock Center

RRID:BDSC_49032

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR55B01-GAL4}attP2

Bloomington
Stock Center

RRID:BDSC_39100

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR52 H12-GAL4}attP2

Bloomington
Stock Center

RRID:BDSC_38856

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR17 F12-GAL4}attP2

Bloomington
Stock Center

RRID:BDSC_48779

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR72B05-GAL4}attP2

Bloomington
Stock Center

RRID:BDSC_39611

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR72B07
-GAL4}attP2

Bloomington
Stock Center

RRID:BDSC_39764

Continued on next page

Chen et al. eLife 2019;8:e38114. DOI: https://doi.org/10.7554/eLife.38114 17 of 26

Research article Neuroscience

https://bdsc.indiana.edu/Home/Search?presearch=29461
https://bdsc.indiana.edu/Home/Search?presearch=8848
https://bdsc.indiana.edu/Home/Search?presearch=6798
https://bdsc.indiana.edu/Home/Search?presearch=26160
https://bdsc.indiana.edu/Home/Search?presearch=51630
https://bdsc.indiana.edu/Home/Search?presearch=7010
https://bdsc.indiana.edu/Home/Search?presearch=1104
https://bdsc.indiana.edu/Home/Search?presearch=38388
https://bdsc.indiana.edu/Home/Search?presearch=9313
https://bdsc.indiana.edu/Home/Search?presearch=30839
https://bdsc.indiana.edu/Home/Search?presearch=854
https://bdsc.indiana.edu/Home/Search?presearch=16130
https://bdsc.indiana.edu/Home/Search?presearch=49032
https://bdsc.indiana.edu/Home/Search?presearch=39100
https://bdsc.indiana.edu/Home/Search?presearch=38856
https://bdsc.indiana.edu/Home/Search?presearch=48779
https://bdsc.indiana.edu/Home/Search?presearch=39611
https://bdsc.indiana.edu/Home/Search?presearch=39764
https://doi.org/10.7554/eLife.38114


Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR72B08-GAL4}attP2

Bloomington
Stock Center

RRID:BDSC_46669

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR72 C01-GAL4}attP2

Bloomington
Stock Center

RRID:BDSC_41358

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR72 C01-GAL4}attP2

Bloomington
Stock Center

RRID:BDSC_47729

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR72 C02-GAL4}attP2/TM3,
Sb[1]

Bloomington
Stock Center

RRID:BDSC_46672

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR78B07-GAL4}attP2

Bloomington
Stock Center

RRID:BDSC_39989

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR88A06-GAL4}attP2

Bloomington
Stock Center

RRID:BDSC_46847

Genetic reagent
(Drosophila
melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR91A07
-GAL4}attP2/TM3,
Sb[1]

Bloomington
Stock Center

RRID:BDSC_47147

Genetic reagent
(Drosophila
melanogaster)

cg7674 RNAi 1
(chromosome III)

NIG-FLY s
tock center

Accession number:
NM_140910.2

Genetic reagent
(Drosophila
melanogaster)

cg7674 RNAi 2
(chromosome II)

NIG-FLY
stock center

Accession number:
NM_140910.2

Genetic reagent
(Drosophila
melanogaster)

nompC-Gal4 Kamikouchi et al., 2009

Genetic reagent
(Drosophila
melanogaster)

inc-Gal4:2 Stavropoulos and Young, 2011

Genetic reagent
(Drosophila
melanogaster)

ppk-Gal4 Zhong et al., 2012

Genetic reagent
(Drosophila
melanogaster)

TrpA1-CD-Gal4 Zhong et al., 2012

Genetic reagent
(Drosophila
melanogaster)

timKO Lamaze et al., 2018

Genetic reagent
(Drosophila
melanogaster)

GMR14A05-Gal4 Janelia Research
Campus
FlyLight Project

26432

Genetic reagent
(Drosophila
melanogaster)

w[1118];+; Nca[ko1]/TM2 This paper Null allele
of Nca

Genetic reagent
(Drosophila
melanogaster)

w[1118];+; Nca[ko2]/TM2 This paper Nca null allele
(second allele)

Genetic reagent
(Drosophila
melanogaster)

w[1118];+; Nca[ko3]/TM2 This paper Nca null
allele
(third allele)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Drosophila
melanogaster)

Canton-S Bloomington
Stock Center

RRID:BDSC_64349

Antibody Rabbit anti-DsRed Clontech RRID:AB_10013483 (1:2000)

Antibody Mouse anti-Bruchpilot Developmental
Studies
Hybridoma Bank

RRID:AB_2314866 (1:200)

Antibody Rabbit anti-GFP Invitrogen RRID:AB_221569 (1:1000)

Antibody Goat anti-Mouse
Alexa Fluor-647

ThermoFisher RRID:AB_141725 (1:500)

Antibody Alexa Fluor 488
goat anti-rabbit IgG

ThermoFisher RRID:AB_2576217 (1:2000)

Antibody Alexa Fluor 555
goat anti-rabbit IgG

ThermoFisher RRID:AB_2633281 (1:2000)

Antibody DAPI Sigma-Aldrich D9542-10MG

Commercial
assay or kit

Wizard SV Gel and
PCR Clean-Up System

Promega Cat. #: A9281

Commercial
assay or kit

Zero Blunt T
OPO PCR Cloning Kit

ThermoFisher
Scientific

Cat. #: 450245

Commercial
assay or kit

TRIzol ThermoFisher
Scientific

Cat. #: 15596026

Commercial
assay or kit

MMLV RT Promega Cat. #: M170A

Commercial
assay or kit

Power SYBR Green
Master Mix

ThermoFisher
Scientific

Cat. #: 4367659

Fly husbandry
Flies were maintained on standard fly food at constant temperature 25˚C under 12 hr: 12 hr light-

dark cycles (12L: 12D). The following strains were obtained from the Bloomington, VDRC and NIG-

FLY stock centers: kk108825 (100625), hmj21533 (54814), jf03398 (29461), ple-Gal4 (8848), Chat-

Gal4 (6798), vGlut-Gal4 (26160), GAD-Gal4 (51630), Ddc-Gal4 (7010), GMR-Gal4 (1104), Trh.1-Gal4

(38388), Tdc2-Gal4 (9313), C5-Gal4 (30839), ok107-Gal4 (854), NcaA502 (16130), cg7646 RNAi 1

(7646R-1) and cg7646 RNAi 2 (7646R-2). The remaining lines obtained from the Bloomington stock

center are part of the Janelia Flylight collection with identifiable prefixes: R23E10-Gal4, R55B01-

Gal4, R52H12-Gal4, Hdc-Gal4 (R17F12-Gal4), R14A05-Gal4, R72B05-Gal4, R72B07-Gal4, R72B08-

Gal4, R72B11-Gal4, R72C01-Gal4, R72C02-Gal4, R78B07-Gal4, R91A07-Gal4, and R88A06-Gal4. The

following lines were generous gifts from Kyunghee Koh: elav-Gal4, nsyb-Gal4, tim-Gal4, TUG-Gal4

and cry-Gal4:16; Joerg Albert: nompC-Gal4 (Kamikouchi et al., 2009) and Nicolas Stavropouplos:

inc-Gal4:2 (Stavropoulos and Young, 2011). ppk-Gal4 and TrpA1-CD-Gal4 were described previ-

ously (Zhong et al., 2012). GMR-hid, timKO and cry02 were previously described in Lamaze et al.

(2017). Except for Ddc-Gal4, Trh.1-Gal4, Tdc2-Gal4, nompC-Gal4 and Hdc-Gal4, all Drosophila

strains above were either outcrossed five times into an isogenic control background (iso31) or inser-

tion-free chromosomes were exchanged with the iso31 line (hmj21533 and jf03398) before testing

for sleep-wake activity behavior. Note: R14A05-Gal4 was initially mislabelled as R21G01-Gal4 in the

Bloomington shipment. The mismatch between the image of R21G01 > GFP in the FlyLight database

and our immuno-staining data (A05, Figure 5A) led us to clarify the actual identity of the line as

R14A05-Gal4 by sequencing genomic PCR product using the following primers pair: pBPGw_ampF:

agggttattgtctcatgagcgg and pBPGw_Gal4R: ggcgcacttcggtttttctt.

Generation of Neurocalcin knockout alleles
Null alleles of Nca were generated using homologous recombination as described previously

(Baena-Lopez et al., 2013). Briefly, genomic DNA was extracted from 20 wild type flies (Canton S)
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using the BDGP buffer A-LiCl/KAc precipitation protocol (http://www.fruitfly.org/about/methods/

inverse.pcr.html). The 5’ (Arm 1) and 3’ (Arm 2) genomic regions flanking the Nca coding sequence

were PCR amplified via high fidelity DNA polymerase (Q5 high-fidelity 2X master mix, M0492S,

NEB) with the following primers: NotI_Arm1F1: gcggccgctaatttgcagctctgcatcg,

NotI_Arm1R1: gcggccgcatggtaagaagcacgcaacc, AscI_Arm2F1: ggcgcgccttatgaccgttccaaaacacc,

AvrII_Arm2R1: cctaggggctaaatacgttgaccaagc. The corresponding Arm1 and Arm2 fragments (~2.5

kb) were gel purified (Wizard SV Gel and PCR Clean-Up System, A9281, Promega) and cloned into

pCR-Blunt II-TOPO vector (Zero Blunt TOPO PCR Cloning Kit, 450245, ThermoFisher Scientific), and

subsequently sub-cloned via NotI (R3189S, NEB) and AscI/AvrII digestion (R0558S and R0174S, NEB)

and T4 ligation (M0202S, NEB) into the pTVcherry vector, a P-element construct containing the mini-

white+ marker and UAS-reaper flanked by FRT and I-SceI sites (Baena-Lopez et al., 2013). The

sequence identifies of Arm one and Arm two fragments within the pTVcherry vector were verified via

Sanger sequencing using the following primers: nca1_f: cagctctgcatcgctttttgt, nca1_3_f:

ccctcgcgcatggtacttta, nca1_r: agcgtcacataagttctccca, nca1_4_f: tggacgaaaataacgatggtca, nca1_5_f:

agactacttagccatgttttcatact, nca1_2_f: tgacgaagccacaattaaagagtg, nca1_1_f: gcaaccctgttcccctttca,

nca2_f: gaccgttccaaaacaccca, nca2_3_f: ttgttgtgcgccacgttttc, nca2_r: acgtatgctccatgattcctct

nca2_4_f: tgcaggtcggttaatcaatgc, nca2_5_f: tcaatcgatttggggccagg, nca2_2_f: ccttctccaggctcagcaaa,

nca2_1_f: actctgcatttcgataagattagcc. Donor lines containing the pTV vector with Arm1 and Arm2

homologous fragments (pTV_nca1 + 2) were then generated via embryonic injection and random

P-element mediated genomic insertions (Bestgene inc CA, USA). To initiate homologous recombina-

tion between pTV_nca1 + 2 and the endogenous Nca locus, donor lines were crossed to yw; hs-flp,

hs-I-SceI/CyO and the resulting larvae were heat shocked at 48 hr and 72 hr after egg laying for 1 hr

at 37˚C. Around 200 female offspring with mottled/mosaic red eyes were crossed in pools of three

to ubiquitin-Gal4[3xP3-GFP] males to remove nonspecific recombination events (via UAS-reaper-

mediated apoptotic activity). The crossings were flipped once over and the progeny (~12000 adults)

was screened for the presence of red-eyed and GFP-positive flies. Three independent GFP+ red-

eyed lines (ko1, ko2, and ko3) were identified. The exchange of endogenous Nca locus with

pTV_nca1 + 2 fragments was confirmed by detecting a 2.6 kb PCR product (Figure 1—figure sup-

plement 1C) in the genomic DNA samples of the above three lines (pre-digested by EcoRI/NotI)

using the following primer pairs: ncaKO-F2: tgggaattgactgatacagcct; ncaKO-R2: ggcactacggtacctg-

cat. ncaKO-F2 matches to the region between 24 bp and 2 bp upstream of Arm1 and ncaKO-R2

overlaps with attP site (Figure 1A). The absence of endogenous Nca mRNA in ko1 flies was con-

firmed by standard and quantitative RT-PCR (Figure 1—figure supplement 5D,E; also see below).

The min-white+ cassette and majority of pTV vector sequences were further removed from the ko1

genome via Cre-loxP recombination (Figure 1A). This ‘Cre-out’ strain was then backcrossed five

times to a NcaA502 line (where A502 is a P-element insertion two kbp upstream of the Nca CDS) that

was outcrossed previously into the iso31 background (see Fly husbandry section). Before testing for

changes in sleep/wake behaviour, the resulting line, termed Nca knockout (NcaKO1), was lastly veri-

fied by sequencing a 576 bp genomic PCR product (using primer pair: nca1_5_f and nca2_r), con-

firming the absence of Nca CDS sequence and the insertion of an attP site in the Nca locus. Two

independent ‘Cre-out’ lines derived from the ko2 and ko3 alleles were also outcrossed to NcaA502

for two generations (NcaKO2 and NcaKO3) and tested for sleep-wake behaviour.

RNA extraction and quantitative PCR
For RNA extractions, 10–20 fly heads per genotype were collected with liquid nitrogen and dry ice.

Total RNA was extracted using TRIzol reagent following manufacturer’s manual (Thermo Fisher Sci-

entific). cDNA was reverse transcribed from 250 or 500 ng of DNase I (M0303S, NEB) treated RNA

via MMLV RT (M170A, Promega). A set of five or six standards across 3125-fold dilution was pre-

pared from the equally pooled cDNA of all genotypes in each experiment. Triplicated PCR reactions

were prepared in 96-well or 384-well plates for standards and the cDNA sample of each genotype

(20- to 40-fold dilution) by mixing in Power SYBR Green Master Mix (Thermo Fisher Scientific) and

the following primer sets: ncaqF2: acagagttcacagacgctgag, ncaqR2: ttgctagcgtcaccatatggg;

cg7646F: gcctttcgaatgtacgatgtcg, cg7646R: cctagcatgtcataaattgcctgaac or

rp49F: cgatatgctaagctgtcgcaca, rp49R: cgcttgttcgatccgtaacc. PCR reactions were performed in

Applied Biosystems StepOne (96-wells module) or QuantStudio 6Flex instruments (384 wells mod-

ule) using standard thermocycle protocols. Melting curve analysis was also performed to evaluate
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the quality of the PCR product and avoid contamination. The Ct values were exported as csv files

and a standard curve between Ct values and logarithm of dilution was calculated using the liner

regression function in Graphpad Prism. The relative expression level for Nca, cg7646 and rp49 of

each sample were estimated by interpolation and anti-logarithm. The expression levels of Nca and

cg7646 for each genotype were further normalized to their respective average rp49 expression level.

Statistical differences between the normalized expressions levels of each genotype were determined

by Mann-Whitney test or Kruskal-Wallis test with Dunn’s post-hoc test using Graphpad Prism.

Sleep-wake behavioral analysis
Three to five day old male or virgin female flies were collected and loaded into glass tubes contain-

ing 4% sucrose and 2% agar (w/v). Sleep-wake behavior was recorded using the Drosophila Activity

Monitor (DAM, TriKinetics inc MA, USA) system or Drosophila ARousal Tracking (DART, BFKlab, UK)

in the designated LD regime (12L: 12D, 8L: 16D, DD or LL) at 25˚C. Behavioral recordings from the

third day of the given LD/DD/LL regime were then analyzed. All flies were entrained to 12L: 12D

prior to entering designated LD regimes. For ectopic activation experiments involving UAS-TrpA1,

flies were cultured in 18˚C during development and then entrained to 8L: 16D at 22˚C before enter-

ing 8L: 16D condition at 27˚C. Drosophila activity (or wake) is measured by infra-red beam crosses in

DAM or by direct movement tracking in DART. A sleep bout is defined by 5 min of inactivity (where

inactivity is defined as no beam crosses during 1 min in the DAM or less than 3 mm movement in 5 s

in the DART). As a readout of the arousal threshold at ZT4 and ZT16, we measured the proportion

of immediate movement initiation in sleeping fly populations (flies that had been immobile for >5

mins before stimulus) upon 5 s of vibration stimuli (five 200 ms 50 Hz pulses with 800 ms intervals)

provided by the motors installed within DART system. The csv output files with beam crosses (DAM)

or velocity data (DART) were processed by a customized Excel calculators (Supplementary file 1) and

R-scripts (https://github.com/PatrickKratsch/DAM_analysR) to calculate the following parameters for

individual flies: Onset and offset of each sleep bout, sleep bout length, day and night sleep minutes,

daily total sleep minutes, and daily sleep profile (30 min interval).

Analysis of circadian rhythm strength
An established MATLAB based tool, Flytoolbox, was used for circadian rhythmicity analysis

(Levine et al., 2002a; Levine et al., 2002b). Flies from control and experimental genotypes devel-

oped and eclosed under 12L: 12D conditions (25˚C). After 3 days of entrainment in 12L: 12D, adult

males were transferred into DAM tubes, and circadian rhythmicity of locomotor activity was assessed

over eleven days of constant dark (DD) following one initial day of 12L: 12D within the experimental

incubator. The strength of rhythmicity (RI) was estimated using the height of the third peak coeffi-

cient in the auto-correlogram calculated for the activity time series of each fly. Rhythmic Statistics

values were then obtained from the ratio of the RI value to the 95% confidence interval for the corre-

logram (2/HN, where N is the number of observations, which correlatively increase with the sampling

frequency), in order to determine statistical significance of any identified period (RS is �1).

Immunohistochemistry and confocal microscopy
Adult male flies were anesthetized in 70% ethanol before brains were dissected in PBT (0.1M phos-

phate buffer with 0.3% Triton-X100) and collected in 4% paraformaldehyde/PBT on ice. The fixation

was then performed at room temperature for 15 min before washing 3 times with PBT. The brain

samples were blocked using 5% goat serum/PBT for 1 hr at room temperature before incubation

with primary antibodies. The samples were washed 6 times with PBT before incubated with Alexa

Fluor secondary antibodies in 5% goat serum/PBT at 4˚C over 24 hr. After washing 6 times with PBT,

the samples were mounted in SlowFade Gold antifade reagent (S36936, Thermo Fisher Scientific) on

microscope slides and stored at 4˚C until imaged using an inverted confocal microscope Zeiss LSM

710. Primary antibody concentrations were as follows: mouse anti-BRP (nc82, Developmental Studies

Hybridoma Bank) - 1:200; rabbit anti-GFP (Invitrogen) - 1:1000; rabbit anti-dsRED (Clontech) -

1:2000. Alexa Fluor secondaries (Invitrogen) were used as follows: Alexa Fluor 647 goat anti-mouse

IgG - 1:500, Alexa Fluor 488 goat anti-rabbit IgG - 1:2000, Alexa Fluor 555 goat anti-rabbit IgG -

1:2000. For quantification of nuclei number in C01 >red stinger and A05 >red stinger brains,

unstained Red-Stinger fluorescence was captured via confocal microscopy. DAPI (Sigma Aldrich) was
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used to counterstain nuclei (at a dilution of 1:5000). The number of Red-Stinger-positive nuclei in

each brain was subsequently quantified using the ImageJ 3D Objects Counter tool, with a variable

threshold used to incorporate all of the visible Red-Stinger-positive nuclei. Standardized images

from the Virtual Fly Brain can be found in the following files (Milyaev et al., 2012; Manton et al.,

2014):

R14A05-Gal4: http://flybrain.mrc-lmb.cam.ac.uk/vfb/jfrc/fl/reformatted-quant/JFRC2_GMR_
14A05_AE_01_13-fA01b_C100226_20100226142935296_02_warp_m0g80c8e1e-1x26r3.nrrd.
R72C01-Gal4: http://flybrain.mrc-lmb.cam.ac.uk/vfb/jfrc/fl/reformatted-quant/JFRC2_GMR_
72C01_AE_01_02-fA01b_C091205_20091205104559169_02_warp_m0g80c8e1e-1x26r3.nrrd.
nc82: https://github.com/VirtualFlyBrain/DrosAdultBRAINdomains/blob/master/template/JFRC
template2010.nrrd.

SynaptopHluorin imaging
Synaptic activity of C01/A05 neurons was monitored in ex vivo fly brains using UAS- super-ecliptic

synaptopHluorin construct (UAS-spH) (Miesenböck, 2012). Adult male C01/A05 > UAS spH or C01/

A05 > UAS spH, kk flies were housed in normal behaviour tubes (see behaviour analysis section) and

entrained for 3 days in 8L: 16D or LL conditions at 25˚C. Individual flies of either genotype were

carefully captured between ZT/CT9 and ZT/CT11 and fly brains were immediately dissected in HL3

Drosophila saline (70 mM NaCl, 5 mM KCl, 1.5 mM CaCl2, 20 mM MgCl2, 10 mM NaHCO3, 5 mM

Trehalose, 115 mM Sucrose and 5 mM HEPES, pH 7.2) at room temperature. Fly brains were trans-

ferred into 200 ml HL3 in a poly-lysine treated glass bottom dish (35 mm, 627860, Greiner Bio-One)

before imaging using an inverted confocal Zeiss LSM 710 microscope (20x objective with maximum

pinhole). Three to five image stacks (12 bits and 16 bits) were taken within two minutes to minimize

tissue degradation and to cover the depth of all spH-positive anatomical regions. Z-projections of

the image stacks of each brain were generated by ImageJ software before the fluorescent intensity

of the indicated neuropil centers was quantified using freely drawn ROIs. Background fluorescence

measured by the same ROIs from areas with no brain tissue was then subtracted to obtain the final

fluorescent value. Mean fluorescent values of the indicated neuropil regions in each hemisphere

were calculated and normalized to the average value of corresponding controls. Medians of the nor-

malized value are compared between genotypes. The statistical difference was determined by

Mann-Whitney U-test using Graphpad Prism.

Bioinformatics
Conservation of amino acid residues between Drosophila Neurocalcin and human Hippocalcin was

determined using ClustalW2 software for multiple sequence alignment. Amino-acid identity and sim-

ilarity was visualized using BOXSHADE.
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Radwańska K, Meerlo P, Houslay MD, Baillie GS, Abel T. 2016. Sleep deprivation causes memory deficits by
negatively impacting neuronal connectivity in hippocampal area CA1. eLife 5:e13424. DOI: https://doi.org/10.
7554/eLife.13424, PMID: 27549340

Helassa N, Antonyuk SV, Lian LY, Haynes LP, Burgoyne RD. 2017. Biophysical and functional characterization of
hippocalcin mutants responsible for human dystonia. Human Molecular Genetics 26:2426–2435. DOI: https://
doi.org/10.1093/hmg/ddx133, PMID: 28398555

Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack AI. 2000. Rest in Drosophila is a
sleep-like state. Neuron 25:129–138. DOI: https://doi.org/10.1016/S0896-6273(00)80877-6, PMID: 10707978

Huber R, Hill SL, Holladay C, Biesiadecki M, Tononi G, Cirelli C. 2004. Sleep homeostasis in Drosophila
melanogaster. Sleep 27:628–639. DOI: https://doi.org/10.1093/sleep/27.4.628, PMID: 15282997

Hunter-Ensor M, Ousley A, Sehgal A. 1996. Regulation of the Drosophila protein timeless suggests a mechanism
for resetting the circadian clock by light. Cell 84:677–685. DOI: https://doi.org/10.1016/S0092-8674(00)81046-
6, PMID: 8625406

Ishimoto H, Lark A, Kitamoto T. 2012. Factors that Differentially Affect Daytime and Nighttime Sleep in
Drosophila melanogaster. Frontiers in Neurology 3:24. DOI: https://doi.org/10.3389/fneur.2012.00024,
PMID: 22375135

Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Jeter J, Iyer N,
Fetter D, Hausenfluck JH, Peng H, Trautman ET, Svirskas RR, Myers EW, Iwinski ZR, Aso Y, DePasquale GM,
et al. 2012. A GAL4-driver line resource for Drosophila neurobiology. Cell Reports 2:991–1001. DOI: https://
doi.org/10.1016/j.celrep.2012.09.011, PMID: 23063364

Jiang Y, Pitmon E, Berry J, Wolf FW, McKenzie Z, Lebestky TJ. 2016. A genetic screen to assess dopamine
receptor (DopR1) Dependent sleep regulation in Drosophila. G3: Genes|Genomes|Genetics 6:4217–4226.
DOI: https://doi.org/10.1534/g3.116.032136

Jo J, Son GH, Winters BL, Kim MJ, Whitcomb DJ, Dickinson BA, Lee YB, Futai K, Amici M, Sheng M, Collingridge
GL, Cho K. 2010. Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin,
AP2 and PSD-95. Nature Neuroscience 13:1216–1224. DOI: https://doi.org/10.1038/nn.2636, PMID: 20852624

Joiner WJ, Crocker A, White BH, Sehgal A. 2006. Sleep in Drosophila is regulated by adult mushroom bodies.
Nature 441:757–760. DOI: https://doi.org/10.1038/nature04811, PMID: 16760980

Kamikouchi A, Inagaki HK, Effertz T, Hendrich O, Fiala A, Göpfert MC, Ito K. 2009. The neural basis of
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