1,073 research outputs found

    Forecast B-modes detection at large scales in presence of noise and foregrounds

    Full text link
    We investigate the detectability of the primordial CMB polarization B-mode power spectrum on large scales in the presence of instrumental noise and realistic foreground contamination. We have worked out a method to estimate the errors on component separation and to propagate them up to the power spectrum estimation. The performances of our method are illustrated by applying it to the instrumental specifications of the Planck satellite and to the proposed configuration for the next generation CMB polarization experiment COrE. We demonstrate that a proper component separation step is required in order achieve the detection of B-modes on large scales and that the final sensitivity to B-modes of a given experiment is determined by a delicate balance between noise level and residual foregrounds, which depend on the set of frequencies exploited in the CMB reconstruction, on the signal-to-noise of each frequency map, and on our ability to correctly model the spectral behavior of the foreground components. We have produced a flexible software tool that allows the comparison of performances on B-mode detection of different instrumental specifications (choice of frequencies, noise level at each frequency, etc.) as well as of different proposed approaches to component separation.Comment: 7 pages, 2 tables, 1 figure, accepted by MNRA

    Observations of the Sunyaev-Zel'dovich effect at high angular resolution towards the galaxy clusters A665, A2163 and CL0016+16

    Get PDF
    We report on the first observation of the Sunyaev-Zel'dovich effect with the Diabolo experiment at the IRAM 30 metre telescope. A significant brightness decrement is detected in the direction of three clusters (Abell 665, Abell 2163 and CL0016+16). With a 30 arcsecond beam and 3 arcminute beamthrow, this is the highest angular resolution observation to date of the SZ effect.Comment: 23 pages, 8 figures, 6 tables, accepted to New Astronom

    Estimates of metabolic rate and major constituents of metabolic demand in fishes under field conditions: Methods, proxies, and new perspectives

    Get PDF
    Metabolic costs are central to individual energy budgets, making estimates of metabolic rate vital to understanding how an organism interacts with its environment as well as the role of species in their ecosystem. Despite the ecological and commercial importance of fishes, there are currently no widely adopted means of measuring field metabolic rate in fishes. The lack of recognized methods is in part due to the logistical difficulties of measuring metabolic rates in free swimming fishes. However, further development and refinement of techniques applicable for field-based studies on free swimming animals would greatly enhance the capacity to study fish under environmentally relevant conditions. In an effort to foster discussion in this area, from field ecologists to biochemists alike, we review aspects of energy metabolism and give details on approaches that have been used to estimate energetic parameters in fishes. In some cases, the techniques have been applied to field conditions; while in others, the methods have been primarily used on laboratory held fishes but should be applicable, with validation, to fishes in their natural environment. Limitations, experimental considerations and caveats of these measurements and the study of metabolism in wild fishes in general are also discussed. Potential novel approaches to FMR estimates are also presented for consideration. The innovation of methods for measuring field metabolic rate in free-ranging wild fish would revolutionize the study of physiological ecology

    A cryogenic waveplate rotator for polarimetry at mm and sub-mm wavelengths

    Full text link
    Mm and sub-mm waves polarimetry is the new frontier of research in Cosmic Microwave Background and Interstellar Dust studies. Polarimeters working in the IR to MM range need to be operated at cryogenic temperatures, to limit the systematic effects related to the emission of the polarization analyzer. In this paper we study the effect of the temperature of the different components of a waveplate polarimeter, and describe a system able to rotate, in a completely automated way, a birefringent crystal at 4K. We simulate the main systematic effects related to the temperature and non-ideality of the optical components in a Stokes polarimeter. To limit these effects, a cryogenic implementation of the polarimeter is mandatory. In our system, the rotation produced by a step motor, running at room temperature, is transmitted down to cryogenic temperatures by means of a long shaft and gears running on custom cryogenic bearings. Our system is able to rotate, in a completely automated way, a birefringent crystal at 4K, dissipating only a few mW in the cold environment. A readout system based on optical fibers allows to control the rotation of the crystal to better than 0.1{\deg}. This device fulfills the stringent requirements for operation in cryogenic space experiments, like the forthcoming PILOT, BOOMERanG and LSPE.Comment: Submitted to Astronomy and Astrophysics. v1: 10 pages, 8 figures. v2: corrected labels for the bibliographic references (no changes in the bibliography). v3: revised version. 9 pages, 7 figures. Added a new figure. Updated with a more realistic simulation for the interstellar dust and with the latest cryogenic test

    The Sunyaev-Zeldovich Effect and Its Cosmological Significance

    Get PDF
    Comptonization of the cosmic microwave background (CMB) radiation by hot gas in clusters of galaxies - the Sunyaev-Zeldovich (S-Z) effect - is of great astrophysical and cosmological significance. In recent years observations of the effect have improved tremendously; high signal-to-noise images of the effect (at low microwave frequencies) can now be obtained by ground-based interferometric arrays. In the near future, high frequency measurements of the effect will be made with bolomateric arrays during long duration balloon flights. Towards the end of the decade the PLANCK satellite will extensive S-Z surveys over a wide frequency range. Along with the improved observational capabilities, the theoretical description of the effect and its more precise use as a probe have been considerably advanced. I review the current status of theoretical and observational work on the effect, and the main results from its use as a cosmological probe.Comment: Invited review; in proceedings of the Erice NATO/ASI `Astrophysical Sources of High Energy Particles and Radiation'; 11 pages, 3 figure

    Photoionization spectroscopy of CH3C3N in the vacuum-ultraviolet range

    Get PDF
    International audienceUsing vacuum-ultraviolet (VUV) synchrotron radiation, threshold and dissociative photoionization of cyanopropyne (CH3C3N) in the gas phase have been studied from 86 000 cm−1 up to 180 000 cm−1 by recording Threshold-PhotoElectron Spectrum (TPES) and PhotoIon Yield (PIY). Ionization energies of the four lowest electronic states X̃+2E,Ã+2A1,B̃+2E and C̃+ of CH3C3N+ are derived from the TPES with a better accuracy than previously reported. The adiabatic ionization potential of CH3C3N is measured as 86872±20 cm−1. A description of the vibrational structure of these states is proposed leading to the first determination of the vibrational frequencies for most modes. The vibrational assignments of the X̃+ state are supported by density functional theory calculations. In addition, dissociative photoionization spectra have been recorded for several cationic fragments in the range 12–15.5 eV (96 790–125 000 cm−1) and they bring new information on the photophysics of CH3C3N+. Threshold energies for the cationic dissociative channels leading to CH2C3N+, CHC3N+, HC3H+, HCNH+ and CH3+ have been measured for the first time and are compared with quantum chemical calculations

    Dynamic validation of the Planck/LFI thermal model

    Get PDF
    The Low Frequency Instrument (LFI) is an array of cryogenically cooled radiometers on board the Planck satellite, designed to measure the temperature and polarization anisotropies of the cosmic microwave backgrond (CMB) at 30, 44 and 70 GHz. The thermal requirements of the LFI, and in particular the stringent limits to acceptable thermal fluctuations in the 20 K focal plane, are a critical element to achieve the instrument scientific performance. Thermal tests were carried out as part of the on-ground calibration campaign at various stages of instrument integration. In this paper we describe the results and analysis of the tests on the LFI flight model (FM) performed at Thales Laboratories in Milan (Italy) during 2006, with the purpose of experimentally sampling the thermal transfer functions and consequently validating the numerical thermal model describing the dynamic response of the LFI focal plane. This model has been used extensively to assess the ability of LFI to achieve its scientific goals: its validation is therefore extremely important in the context of the Planck mission. Our analysis shows that the measured thermal properties of the instrument show a thermal damping level better than predicted, therefore further reducing the expected systematic effect induced in the LFI maps. We then propose an explanation of the increased damping in terms of non-ideal thermal contacts.Comment: Planck LFI technical papers published by JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022

    Antimicrobial peptide capsids of de novo design

    Get PDF
    The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact

    LEVERAGING PLASMA-DERIVED EXOSOMES FOR BIOMARKER DISCOVERY IN SICKLE CELL DISEASE: PREPARATION FOR A LARGE PROSPECTIVE STUDY

    Get PDF
    Diverse clinical variability among sickle cell disease (SCD) patients opposes crises prediction, health monitor- ing and streamlined management. Thus, an unmet need for objective biomarkers prevails. Exosomes are extra-cellular nano-vesicles (50-150nm), enriched in bioactive lipids, proteins, mRNAs and miRNAs, released by cells. They transport molecular cargo to nearby/distant cells to affect-regulate biological processes. Recent studies by Khalyfa et al. assessed the plasma exosome content, their sources and transcriptomics signature as predictive marker in SCD children with acute chest syndrome. However, the small sample sizes (32 and 33 individuals, respectively) may not capture the clinical variability
    • 

    corecore