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Field relevant metabolic measurements in fish 

 
 

Abstract 29 
Metabolic costs are central to individual energy budgets, making estimates of metabolic rate vital 30 
to understanding how an organism interacts with its environment as well as the role of species in 31 
their ecosystem. Despite the ecological and commercial importance of fishes, there are currently 32 
no widely adopted means of measuring field metabolic rate in fishes. The lack of recognized 33 
methods is in part due to the logistical difficulties of measuring metabolic rates in free swimming 34 
fishes. However, further development and refinement of techniques applicable for field-based 35 
studies on free swimming animals would greatly enhance the capacity to study fish under 36 
environmentally relevant conditions. In an effort to foster discussion in this area, from field 37 
ecologists to biochemists alike, we review aspects of energy metabolism and give details on 38 
approaches that have been used to estimate energetic parameters in fishes. In some cases, the 39 
techniques have been applied to field conditions; while in others, the methods have been primarily 40 
used on laboratory held fishes but should be applicable, with validation, to fishes in their natural 41 
environment. Limitations, experimental considerations and caveats of these measurements and the 42 
study of metabolism in wild fishes in general are also discussed. Potential novel approaches to 43 
FMR estimates are also presented for consideration. The innovation of methods for measuring 44 
field metabolic rate in free-ranging wild fish would revolutionize the study of physiological 45 
ecology. 46 

 47 
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 1. Introduction 52 

An organism’s energy metabolism can be subdivided into supply (Energy in), transformation or 53 

use (Energy out) and accretion of tissue mass for growth or storage (Energy retained) and reproductive 54 

effort which may be in the form of gonadal investment (Energy retained) or may be Energy out with 55 

the release of gametes (Fig. 1). However, the interaction between the environment and an 56 

individual’s energetic costs are complex and vary according to species, developmental stage, 57 

season and even subpopulation/geographic region. This complexity may confound direct extension 58 

of laboratory-derived estimates of energetic parameters to field-relevant questions. As such, robust 59 

means of estimating metabolic rate that can be extended for field use are critical to understanding 60 

the energy balance in individuals. Knowledge at the individual or population level can then be 61 

applied to study how variation in energetics may influence the species’ role in the ecosystem. The 62 

interdisciplinary extension of laboratory-level techniques to field level questions represents an 63 

opportunity for significant advancement, as long as the assumptions and limitations of these 64 

approaches are recognized.   65 

In many, if not most, aquatic ecosystems fish are critically important consumers. Fishes are often 66 

high level predators and, within the same ecosystem, smaller forage species may be key energy 67 

conduits between trophic levels. Moreover, fishes are well recognized for their susceptibility to 68 

environmental disturbances, including anthropogenic alterations, and are of worldwide economic 69 

and cultural importance. However, despite such ecological and sociological significance of fishes, 70 

there is a dearth of direct information for metabolic rate (MR) in free swimming fishes under field 71 

conditions. The limited information on MR for fish under truly natural conditions leaves an 72 

important information gap in the ability to relate fish energy demands with, for instance, 73 

environmental change or anthropogenic challenges. The aim of this article is to synthesize many 74 

of the strategies that can be applied to estimate MR (e.g. energy expenditure) or alternatively, that 75 

can provide proxy measures of major components of energy balance in fishes. Our goal is to cover 76 

several levels of investigation from the currently available approaches that predominate in this 77 

area of research, telemetry and respirometry, to longer term or integrative methods as well as more 78 

indirect proxies at the organ and tissue level. Each of these levels of investigation could warrant a 79 

review unto themselves but our task is to consolidate options in one place to encourage further 80 

discussion, development and inquiry.  81 
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It is also worth adding that while we refine our focus to specifically consider fishes, the majority 82 

of the following may be applicable to other organisms, including aquatic and non-aquatic species. 83 

We also emphasize that while it is simpler to complete metabolic studies under controlled 84 

laboratory conditions, and much excellent work has done so, it is difficult, if not impossible, to 85 

fully replicate truly environmental conditions and stochasticity in a controlled setting. As such, we 86 

focus here on approaches with potential for extension to field conditions or wild sampled fishes. 87 

We will first address some key definitions and broad scale aspects important to all metabolic work 88 

on fishes, including some specific areas of relevance. This is followed by brief review of several 89 

approaches to measuring MR, or major components that contribute to metabolic demands.  90 

2. Definitions, relevance and caveats 91 

There are several terms that must be defined and aspects that ubiquitously influence metabolism 92 

in fishes and therefore should be considered regardless of the experimental approach.  93 

2.1 Definitions 94 

2.1.1 What is metabolic rate? 95 
Metabolic rate (MR), the energy expenditure by an organism under a given condition, is defined 96 

as a measurement of energy usage (in J, although often kJ or kcal are used) over time and can be 97 

quantified by direct or indirect calorimetry. Direct calorimetry measures MR by the heat released 98 

during metabolic energy transformation. Anything not using direct calorimetry to measure energy 99 

use is a proxy of MR and thus requires some form of conversion to be a measurement of MR. 100 

These proxies would include measurements of oxygen consumption or carbon dioxide production, 101 

termed ṀO2 or ṀCO2 by us below, even though gas exchange rates are frequently, and incorrectly, 102 

referred to as MR. 103 

To convert a gas exchange rate to a MR is not trivial because it requires some knowledge of the 104 

metabolic fuel being oxidized, be it lipid, carbohydrate or protein as the carbon source. The fuels 105 

being oxidized can be determined empirically using a respiratory exchange ratio, which is the ratio 106 

of moles of CO2 produced per mole of oxygen (O2) consumed, or a respiratory quotient (RQ) if 107 

the animal is in a steady state; RQ values of 1.0, 0.7 and 0.8 are typically used for complete 108 

oxidation of carbohydrate, lipid and protein, respectively (Frayn 1983). However, unless an 109 

organism is effectively oxidizing either solely lipid or solely carbohydrate it becomes difficult to 110 

estimate MR with the RQ alone because the contribution of protein oxidation will be unclear. 111 
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Although the contribution from protein is sometimes ignored, since nitrogen is liberated in order 112 

to oxidize protein for ATP synthesis the RQ can be combined with a nitrogen quotient (NQ), moles 113 

of nitrogen produced per mole of O2 consumed, to account for protein oxidation. Caution is 114 

required when calculating the NQ for fish because simply measuring the N-excretion products 115 

ammonia and urea to estimate total N-excretion, and thus net protein oxidation, may introduce 116 

errors, the degree to which may depend on the physiological state of the fish (Lauff and Wood, 117 

1996; Kieffer et al., 1998; Kajimura et al., 2004). Alternatively, but far from ideal, assumptions on 118 

the fuels may be made.  119 

With the proportional contribution of the major oxidative fuels the metabolic rate can be calculated 120 

with the energy contained per mole, or mass, of fuel used (typical values for glucose, palmitate 121 

and amino acid oxidation are 2818 kJ mole-1, 10039 kJ mole-1 and 1989 kJ mole-1, respectively 122 

(Ferrannini, 1988)). Of note, these values of energy use are somewhat misleading because the 123 

efficiency of energy conversion in metabolic systems is not perfect, with substantial amounts of 124 

the energy ‘available’ being lost as heat rather than being coupled to metabolic or physical work.  125 

2.1.2 Defining metabolic states 126 
The main focus of this article is on field metabolic rate (FMR), which is considered to be the 127 

energy expenditure of free-ranging animals in their natural environment. In this regard it differs 128 

substantially from most other types of metabolic rate, which are generally measured on restrained 129 

animals or under a given set of conditions. Standard metabolic rate (SMR), for example, is the 130 

minimal metabolic costs of maintaining organismal homeostasis and integrity and corresponds 131 

with the term Basal costs (Energy out) in Fig. 1. SMR is measured in the post-absorptive state and at 132 

rest and is somewhat analogous to the basal metabolic rate (BMR) in endotherms, but since 133 

temperature influences MR, a SMR value also requires knowledge of the temperature at which it 134 

was measured, rather than simply being in the thermal neutral zone for BMR. Routine metabolic 135 

rate (RMR) is another estimate of metabolism commonly measured in fishes, referring to baseline 136 

costs plus the costs of voluntary, routine activity. Ideally, the amount of activity being performed 137 

by individuals should be quantified when performing measures of RMR. Maximum metabolic rate 138 

(MMR) is the upper limit of metabolic capacity. Generally the MMR is constrained to maximum 139 

aerobic MR even though organisms can have higher absolute metabolic energy use under short-140 

term anaerobic burst locomotion. However, this high relative intensity anaerobic state in most 141 

animals, including fishes, is generally ephemeral with duration varying under the influence of 142 
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many factors including, but not limited to, species, life-stage and condition.  An additional term, 143 

active metabolic rate (AMR), can be found in the literature; however, its intended meaning can 144 

vary. Sometimes AMR is used to replace MMR when MMR is measured during maximum 145 

sustained exercise (Jobling 1995) or after exercise-induced exhaustion (Norin and Malte 2011) as 146 

opposed to during feeding, for example). Other times it is used to mean any level of metabolism 147 

during activity (Ohlberger et al. 2005). Given this inconsistent definition of AMR we urge caution 148 

to the reader when this term is encountered in the literature.  149 

2.2 The need and relevance of metabolic rate estimates applicable to field conditions 150 
Fish have served as important models in our understanding of the proximate and ultimate drivers 151 

of variation in MR and its ecological importance (Conrad et al., 2011; Metcalfe et al., 2016a). This 152 

is despite the fact that almost all of this work has depended on MR data collected on animals in a 153 

laboratory setting or confined within an experimental apparatus such as a respirometer. As 154 

elaborated below, the innovation of methods for measuring FMR in free-ranging wild fish would 155 

revolutionize the study of physiological ecology as well as our understanding of the impacts of 156 

anthropogenic environmental disturbance.  157 

2.2.1 Behavioural and ecological studies 158 
Some of the greatest insights on the importance of intraspecific diversity have come from studies 159 

using fish and this area could be opened even further with the advent of methods for measuring 160 

FMR. During the last decade, there has been a tremendous increase in research examining 161 

intraspecific variation in MR and its links with the behavioural ecology of individual animals (Biro 162 

and Stamps, 2010; Burton et al., 2011; Killen et al., 2013). In general, animals with a higher BMR 163 

or SMR are more bold, active, aggressive, or exploratory. It has so far been extremely difficult to 164 

place such links into a true ecological context because we lack reliable means for measuring energy 165 

expenditure in free-ranging fish. Most studies compare behaviour measured during one time 166 

period, to estimates of MR measured during another time period, although occasionally behaviour 167 

can be quantified while the animal is in a respirometry chamber (Killen et al., 2007; Seebacher et 168 

al., 2013). Under these conditions, however, the animal is spatially constrained with unknown 169 

effects on behaviour. Some other researchers have used indirect proxies, such as opercular beat 170 

rate to estimate ṀO2 during the performance of behaviour (Millidine et al., 2009; Reid et al., 2012).   171 



Field relevant metabolic measurements in fish 

5 
 

There are a number of specific behavioural contexts in which the ability to measure FMR would 172 

be extremely insightful. The energy spent during predator-prey and social interactions are difficult 173 

to estimate using traditional respirometry since these situations are notoriously difficult to replicate 174 

in the laboratory (e.g. Sloman and Armstrong, 2002). The ability to measure FMR alongside 175 

behaviour would increase our understanding of causal associations between MR and behaviour 176 

and provide insight into the potential for correlated selection on life-history traits (Hoffmann and 177 

Merilä, 1999; Sgro and Hoffmann, 2004; Killen et al., 2013). These methods would also facilitate 178 

tests of the allocation and production models of energy budgeting (Nilsson, 2002; Careau et al., 179 

2008), which have so far been impossible to directly examine in fish because they depend on 180 

measures of daily energy expenditure.  181 

2.2.2 Ecophysiology and toxicology 182 
Extending detailed measurements of energetics or FMR to wild fish under natural conditions could 183 

be invaluable to assessing the adaptation of physiological phenomena to ecologically relevant 184 

variability or challenge under truly environmentally relevant conditions. For example, in a lab 185 

setting, SMR can vary according to food availability (O’Connor et al. 2000) and there is no reason 186 

to believe the situation is different in wild fish, but what consequence this has on overall energy 187 

budgets is largely speculative. A number of teleosts decrease or cease feeding activity over winter 188 

and SMR is depressed by a variety of mechanisms during that time. For example, Atlantic cod 189 

(Gadus morhua) and cunner (Tautogolabrus adspersus) exhibit seasonal changes in rates of 190 

protein synthesis (Treberg et al., 2005 and Lewis et al,. 2007, respectively) which are likely linked 191 

to substantial changes in MR. Changes in food availability may also influence contaminant uptake 192 

from prey items or even from water, as gill ventilation is adjusted to match energy demand. An 193 

increased reliance on lipid stores during periods of fasting could mobilize existing burdens of 194 

hydrophobic contaminants (Paterson et al., 2007) and modulate their toxicity. Reduced food intake 195 

is also associated with parental care, and in species such as the largemouth bass, activity levels can 196 

double during this time (Cooke et al. 2002). The capacity to measure FMR could test the actual 197 

metabolic consequences of these responses.  198 

A variety of aquatic toxins alter MR in fish, including metals (Waiwood and Beamish, 1978), 199 

PAHs (Gerger and Weber, 2015) and pesticides (Lunn et al., 1976; Beyers et al., 1999) and 200 

responses can be bidirectional. For example, in largemouth bass (Micropterus salmoides), short 201 

term exposure to the pesticide dieldrin decreases ṀO2, while longer exposures increase ṀO2 in a 202 
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dose-dependent manner (Beyers et al., 1999). Environmentally relevant mixtures of toxins and 203 

physicochemical factors are difficult to reproduce in the lab so understanding how contaminants 204 

influence energetics or FMR under natural conditions will allow more accurate toxicokinetic 205 

modeling and estimations of ecological impacts. 206 

2.2.3 Energetic consequences of environmental disturbance 207 
Perhaps the biggest breakthroughs provided by measures of FMR in fish would be an enhancement 208 

of knowledge on how species are affected by environmental disturbance. Metabolic rate changes 209 

in response to a number of environmental factors including thermal fluctuations, oxygen 210 

availability, water pH, and contaminants, and all of these are expected to worsen in aquatic habitats 211 

over the next several decade in response to global climate change and anthropogenic activity. 212 

Although the effects of these factors on metabolism have been studied in the laboratory, we have 213 

no knowledge of how overall energy expenditure is impacted. Another major form of 214 

environmental alteration is the construction of dams, wave energy converters and other structures 215 

that alter flow regimes in freshwater and marine habitats. These are believed to have a major effects 216 

on activity specific metabolic demands in fish (Hanson et al., 2008), but the exact consequences 217 

are unknown because we have no direct measures of energy throughput in the field.  218 

2.2.4 Stock management 219 
Measures of species’ energy demand at different trophic levels would also permit a more precise 220 

understanding of aquatic food webs and the prey requirements of economically and ecologically 221 

valuable fish stocks. Current fisheries models that utilise energy budget parameters rely on 222 

laboratory-derived estimates of MR or bioenergetics simulation (e.g. from the dynamic energy 223 

budget model), and would undoubtedly be refined by the use of actual field energy expenditure. 224 

Measures of FMR would also tell us how species (or individuals) alter their energy expenditure 225 

during key life-history periods such as migrations, spawning, or overwintering. 226 

2.3 Considerations and caveats for metabolic rate determinations 227 

Any approach to measuring MR, or the major constituents of MR, will have limitations and 228 

logistical constraints. Extended details are beyond the scope of this review, but these constraints 229 

range from the need for, and nature or degree of laboratory validation, to animal recapture and 230 

large scale data integration. Moreover, the nature of the scientific question may influence what 231 

approaches are appropriate. For instance, what could be valid for intraspecific comparisons may 232 
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be confounded by interspecific studies or introduce excess uncertainty and variation. Temporal 233 

variation in MR, or demand, may also occur in fishes and thus ‘snapshot’ techniques will only 234 

reflect the short-term leading up to the measurement, whereas measurements incorporating the 235 

long term integration of energetics, like growth as size at age, provide poor resolution over short 236 

time scales. As such, there is no clear ‘one test fits all’ approach to extending metabolic research 237 

to the field. Beyond just experimental conditions, the MR in fishes varies in response to a variety 238 

of environmental traits. For example, both SMR and MMR may be influenced by temperature and 239 

this presumably leads to the potential for seasonality in FMR. Likewise, food conversion 240 

efficiency, minimum and maximum ration and subsequently growth potential are all influenced by 241 

temperature in fishes (Brett et al., 1969; Jobling, 1988; Ojanguren et al., 2001; Handeland et al., 242 

2008). Seasonal changes in locomotory activity, foraging effort and success, allocation to growth 243 

versus reproduction, along with potential seasonality in SMR may all need to be considered when 244 

trying to apply laboratory level strategies and data to the study of fishes in the field.  245 

A major factor when discussing any estimate of MR is the effect of body size (Glazier, 2005; 246 

Killen et al., 2010). Absolute energy demand increases allometrically with biomass. Consequently, 247 

estimates of MR may need to be adjusted for differences in size, particularly if measures are made 248 

over long time periods during which the fish may either grow or lose mass. An indirect effect of 249 

changes in body size on field estimates of metabolism are potential changes in tissue 250 

concentrations of any injected reagents. This could limit the duration over which fish can remain 251 

at large and still provide useful measures of FMR. Further, smaller and younger fish tend to grow 252 

faster. Therefore, any confounding effects of growth or size on measures of FMR may be 253 

disproportionately problematic for particular life-stages.  254 

Another limitation or constraint on many hypothetical methods for measuring FMR would be the 255 

ability to recapture individuals for re-assessment of tissue biochemistry, or retrieval of bio-loggers 256 

(e.g. accelerometers). In general, recaptures will be more feasible in stream-dwelling fishes (e.g. 257 

juvenile salmonids) or site-attached species (e.g. many coral reef fishes) but can be a barrier or 258 

challenge for the study of pelagic species or species with large home ranges. Recapture rates for 259 

particular species may also vary among environments (e.g. recapture may be affected by 260 

temperature effects on activity). Finally, the actual methods used for recapture could bias which 261 

phenotypes can be collected. For example, techniques such as trawling, trapping, or angling could 262 
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select for particular phenotypes (e.g. bolder individuals or those with a higher SMR (Philipp et al., 263 

2009; Wilson et al., 2011; Killen et al., 2015)), potentially leading to recapture-associated bias in 264 

which phenotypes are ultimately included in estimates of FMR.  265 

3. Approaches to metabolic rate estimates applicable to field conditions 266 

3.1 Why doubly labelled water is a dead-end for FMR in fish  267 
There is no consensus ‘gold standard’ technique for measuring FMR in terrestrial animals but the 268 

doubly labelled water (DLW) technique (Butler et al., 2004; Speakman et al., in the current issue) 269 

has been widely applied and may be as close as it comes for many animals less than ~ 100 kg in 270 

size. Briefly, the DLW method monitors the disappearance of labelled oxygen and hydrogen 271 

(enriched with stable isotopes) following injection of a known dosage of labelled water. Since 272 

oxygen can leave the body as CO2 or H2O while hydrogen is predominantly lost as H2O the 273 

difference in the disappearance of the two tracers can be used to estimate CO2 production.  While 274 

attractive for estimating FMR for many animals, the DLW technique is not effective in aquatic 275 

species that have high whole body water turnover rates. For instance, teleost fishes have 276 

unidirectional water influx rates that indicate whole body water turnover rates from ~ 5-10% per 277 

hour to well over 100% of total exchangeable body water turnover per hour (Evans 1969). 278 

Osmoconforming animals appear to have equal or even higher rates of water turnover (Rudy, 1967; 279 

Haywood, 1974). Given such high water turnover rates, it would seem implausible to accurately 280 

monitor metabolic carbon dioxide CO2 production with the DLW approach in these aquatic 281 

organisms. Since the majority of inhabitable space is aquatic, alternatives to the DLW approach 282 

are required to glean representative information on the FMR of a vast number of species.  283 

3.2 Biotelemetry  284 

There have been substantial advances in linking telemetry, accelerometry and other methods to 285 

estimate metabolic costs in fishes. We will only briefly touch upon some of the major concepts 286 

and components and direct the interested reader to Cooke et al. (this issue) for further details.   287 

3.2.1 Heart rate 288 

Tissue oxygen demand and metabolic waste removal are supported by blood flow, and heart rate 289 

(fh) is an important determinant of total cardiac output in fish. To varying degrees, fh is sensitive 290 

to feeding state, activity, physiological and social stress and water quality, all of which are closely 291 

tied to MR. Although there are limitations in the use of fh as a proxy for MR in the field (see 292 
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below), it has shown promise as an indicator of energy expenditure in fish. Various logging and 293 

telemetry methods are now available to assess fh in free swimming fish and eliminating the 294 

confinement and disturbances associated with lab-based measurements can greatly improve data 295 

quality. For instance, fh is lower when measured in free swimming fish compared to confined 296 

animals (Gräns et al., 2010) and a similar pattern is evident for MR (Clark et al., 2010). Tag size 297 

and surgical constraints generally render this approach more appropriate for relatively large fish 298 

(>575 g), but lab trials have been successful for animals as small as 100 g (Snelderwaard et al., 299 

2006).  300 

There are a number of limitations to consider when using fh as a proxy for MR in the field, many 301 

of which can be addressed by rigorous validations in the lab. The major concern is that the 302 

proportional influence of fh on cardiac output can change according to the stimulus influencing 303 

MR and effects on the relationship between fh and MR may be difficult to predict (Thorarensen et 304 

al., 1996). The use of fh to estimate energy expenditure may be best applied over longer time scales 305 

and in combination with temperature logging as a more accurate predictor of MR than activity 306 

based methods (Clark et al., 2010).  307 

3.2.2 Locomotory activity and accelerometry 308 

Activity-specific energy expenditure represents a key part of the overall energy budget of a fish 309 

(Fig. 1) and techniques are available for quantifying activity in free swimming fish (reviewed by 310 

Metcalfe et al., 2016b). Locomotory activity can be assessed using electromyography (EMG) tags, 311 

which quantify contractile activity in specific muscles, or it can be estimated from accelerometry 312 

data. Accelerometry tags quantify acceleration of the animal in two or three dimensions and can 313 

provide very high resolution data on activity and behaviour patterns. Environmental variables can 314 

influence swimming kinematics, consequently, the relationship between EMG output and MR may 315 

vary between different environmental conditions. For example, fish may vary tail-beat frequency 316 

and amplitude independently as water temperature changes (Lea et al., 2016), so the characteristics 317 

of the EMG output may differ at similar swimming speeds.  318 

As with fh tags, these approaches are best deployed in relatively large fish where the additional 319 

volume and mass of the tag will be less burdensome. Tags can be either logging or transmitting, 320 

with or without the ability to simultaneously record environmental variables like temperature. 321 

Although activity-specific energy expenditure estimates do not account for the influence of 322 
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environmental variables on MR, the addition of temperature data could provide at least some 323 

capacity to estimate relative changes in metabolic demand over the recording period. Accurately 324 

assessing activity-specific energy expenditure from accelerometry data requires high sampling 325 

rates, which are more suitable to archival tags. Transmitting tags have a limited capacity to transmit 326 

high resolution data in real time but data integration techniques are becoming available to address 327 

this issue (Metcalfe et al. 2016b). As discussed above, the unnatural conditions imposed by lab-328 

based studies can influence heart function in fish and the situation is no different with activity-329 

related parameters. Confinement in a typical swim tunnel respirometer restricts movement and can 330 

prevent energy saving behaviours (e.g. schooling (Marras et al., 2015)) and the use of different 331 

swimming gaits (e.g. burst burst-and-coast swimming (Videler and Weih, 1982) or Kármán gaiting 332 

(Taguchi and Liao, 2011)). Relationships between EMG or accelerometry data and ṀO2 may 333 

therefore be somewhat different between lab and field studies, but this should not greatly diminish 334 

the power of these approaches for assessing activity-specific energy expenditure.  335 

3.3 Respirometry 336 

While direct calorimetry has been used for laboratory held fishes (for instance Smith et al., 1978; 337 

Van Waversveld, 1989; van Ginneken et al., 1996; Regan et al., 2013), this approach has not been 338 

commonly applied in field conditions or wild-captured fish. Instead, fish metabolism is usually 339 

indirectly estimated by measuring ṀO2 of fish in a respirometer (Brett, 1962; Beamish, 1978), 340 

although ṀCO2 has also been used for indirect calorimetry on fishes (Kutty et al., 1971; Kieffer et 341 

al., 1998). Respirometry encompasses introducing an organism into a sealed static chamber or 342 

swim tunnel and, in the case of ṀO2, measuring the decrease in oxygen concentration over time. 343 

Three different respirometry techniques are generally used: closed, flow-through and intermittent-344 

flow systems (Steffensen, 1989; Clark et al., 2013; Svendsen et al., 2016)  345 

The majority of respirometric experiments have been conducted in controlled laboratory settings 346 

following strict experimental procedures and with minimal environmental variation (e.g. constant 347 

water temperatures and velocities). A few studies have tried to incorporate environmental 348 

variations into the laboratory experiments by fluctuating temperature (Beauregard et al., 2013; 349 

Oligny-Hebert et al., 2015), flow (Enders et al., 2003; Taguchi and Liao, 2011), salinity and 350 

hypoxia. To fully incorporate natural environmental settings or to work with species at risk where 351 

regulations may prevent removal of fish from the river system, a few studies have attempted to 352 
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perform respirometric experiments in the field where native fish can be tested in their natal waters 353 

under ambient light and temperature regimes (Farrell et al., 2003; Rodnick et al., 2004). Some of 354 

these studies used very simple closed (Rasmussen et al., 2012; Warnock and Rasmussen, 2014) or 355 

continuous flow-through respirometers (Hammer and Purps, 1994), while others employed state-356 

of-the-art intermittent-flow systems (Gamperl et al., 2002; Farrell et al., 2003). Some of the most 357 

extreme examples of measuring ṀO2 in wild fishes come from the study of deep-sea fishes; 358 

pressurized respirometers and baited-trap based in situ respirometers have demonstrated very low 359 

MR in many deep-living species (Smith, 1978; Drazen et al. 2005; Drazen and Yeh, 2012). 360 

Collectively, these studies on fishes recently collected or captured in the field have measured 361 

variations of MR (i.e. SMR, routine (RMR), active (AMR) and MMR) as well as derivatives of 362 

MR (e.g. aerobic scope), applying a wide range of different respirometric technologies. The size 363 

of the employed equipment ranged over several scales from small 600 ml static chambers 364 

(Warnock and Rasmussen, 2014) to a 26 000 l ‘seagoing mega-flume swim tunnel’ (Payne et al., 365 

2015). 366 

When respecting habituation and fasting periods, field-based ṀO2 measurement generally 367 

compare well to laboratory estimates. For example, field-based ṀO2 results for Sockeye salmon 368 

(Oncorhynchus nerka Walbaum 1792) assessed with a mobile Brett-type respirometer swim tunnel 369 

(Farrell et al., 2003) were comparable to laboratory-based ṀO2 results by Brett and Glass (1973), 370 

strengthening the argument that reliable respirometry can be performed in field locations. 371 

The available tools that allow for reliable field measurements of ṀO2 are of particular interest for 372 

fish species that are too fragile for transportation and endangered species that cannot be removed 373 

from their natural environment. While considerable effort has been spent to develop respirometric 374 

methods to measure metabolic rates in the field, technical challenges remain for off-road, remote 375 

locations without access to electrical power. It is also important to remember that any attempt to 376 

use respirometry on animals in the field will not be estimating FMR because, by definition, FMR 377 

can only be measured on unrestrained animals. However, using estimates of SMR or MMR derived 378 

from respirometric experiments could be combined with some of the other methods, we describe, 379 

to construct reasonable estimates of the fish’s total energy expenditure in the natural environment. 380 

 381 
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3.4 Isotopic tracer turnover methods  382 

Along with protein synthesis, see below, isotopic precursors have been used extensively for 383 

metabolic study of fishes and other animals. For instance, 14C and 3H labelled carbon substrates 384 

can be invaluable for measuring the rate of substrate oxidation/preferenda (van den Thillart, 1986) 385 

and blood-borne metabolic fuel turnover (Haman et al., 1997). However, these experimental 386 

approaches require extensive validation or the capacity for repeated sampling over time to establish 387 

either decay curves for turnover or stable-steady state conditions for calculating fluxes. These 388 

validation requirements seem to have thus far precluded the use of radioisotope, or parallel stable 389 

isotopic, tracer methods on fish under field conditions (the authors are unaware of any such 390 

studies). Interestingly, the Haman et al. (1997) study demonstrates an important caveat that is 391 

highly applicable for field sampling. By manipulating temperature and oxygen levels it was shown 392 

that plasma glucose and free fatty acid levels in rainbow trout (Oncorhynchus mykiss) were not 393 

necessarily reflective of metabolic flux or demand for a metabolic fuel (Haman et al., 1997). 394 

Therefore, differences or lack thereof in plasma metabolites from field sampled fishes should be 395 

interpreted with caution.  396 

Recently rubidium turnover has become a possible alternative to the DLW technique for free-397 

ranging small animals with whole body turnover paralleling the DLW estimate of MR and the 398 

ṀCO2 by respirometry (Tomlinson et al., 2013). It appears that rubidium turnover is likely due to 399 

rubidium acting as a potassium analogue, with whole body potassium losses being a function of 400 

MR (Tomlinson et al., 2014). Given the high environmental potassium exchange in fishes, which 401 

varies markedly with salinity (Eddy, 1985), it would seem that application of rubidium clearance 402 

approach may suffer from similar problems of isotopic turnover that preclude using the DLW 403 

technique in fishes. 404 

3.5. Long term assimilation approaches  405 

There are several means of evaluating energy use, or demand, over long time periods in fishes that 406 

are applicable to field sampling and use. These will have lower resolution compared to direct 407 

measurements on individuals, and may be better suited to the study of populations, but these long 408 

term estimates may have particular utility for some studies on metabolic costs in fish under field 409 

conditions. We will focus on two strategies, a bioenergetics balance model and isotopic enrichment 410 

and discuss them only briefly.  411 
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3.5.1. Energetic balance estimates 412 

Taking a bioenergetics model approach has led to some important findings about environmental 413 

differences in fishes in the wild as well as the role fish have in the energy budgets of ecosystems. 414 

This generally takes the form of using estimates of the terms that make up typical bioenergetics 415 

models (see Fig. 1) or deriving these estimates based on field collected data. Often key terms must 416 

be assumed, such as losses as nitrogenous waste, digestion efficiency and the magnitude 417 

contribution of the costs of digestion, or are taken from laboratory studies on the same or closely 418 

related species. For the latter point, this is often done for estimates of SMR if a value is to be used. 419 

Estimates of food intake for wild fish are complicated but can be quantified from gut contents, 420 

although to assess Energy in, this requires determining the rate of gut evacuation or assuming a 421 

value for this (Elliot and Persson, 1978; Hyslop, 1980). 422 

A value for Energy retained can be determined using growth estimates based on the size at age 423 

combine with the energy content of somatic tissues, or their proximal composition (content of 424 

lipid, protein and carbohydrate) with reproductive investment determined based on the energy 425 

content of the gonad. The reproductive investment may also require correcting for past spawning 426 

activity if the species is iteroparous. If no estimates of metabolic energy expenditure are available, 427 

be it SMR or the energy used in activity, it is possible to estimate the combined total metabolic 428 

costs based on the difference between Energy in (as food consumption) and Energy retained (as tissue 429 

growth).  430 

The need for robust comparison or ‘corroboration’ between laboratory and field-based 431 

bioenergetics models has been appreciated for over two decades (Hansen et al., 1993). Some 432 

datasets, however, failed to match laboratory and field results. This illustrates the need for cautious 433 

extension of the assumptions and simplifications that may come with a bioenergetics model 434 

approach. A more recent analysis found continued variable, and often poor, agreement between 435 

actual and modelled values (Chipps and Wahl, 2008). Moreover, physiological variation amongst 436 

distinct populations in response to local environmental conditions (local adaptation) is one of the 437 

recognized potential confounding factors along with uncertainty about feeding rates (Chipps and 438 

Wahl, 2008), the latter of which will be intimately linked to prey density and swimming activity. 439 

Moreover, conditions leading to compensatory growth (Whitledge et al., 1998) and the known 440 
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wide intraspecific differences in growth and SMR (Tyler and Bolduc, 2008) common in many 441 

fishes may also lead to complications in fine scale resolution for individual fishes.  442 

Despite the above considerations, using the concept of energetic balance, combined with data on 443 

growth, estimates of energy intake and possible reproductive investment has led to some important 444 

findings on the partitioning and use of energy in fishes. These include the remarkably high energy 445 

investment in ‘metabolism’ in some deep-living, active swimming seamount fishes, who expend 446 

large amounts of energy due to ocean currents. This corresponds to a much higher food 447 

consumption but low food conversion efficiency compared to other deep-sea fishes with low 448 

metabolic capacity (Koslow, 1996; 1997). Likewise, using energy budget estimates, it has been 449 

shown that congeneric marcourids (rattails or grenadiers) with overlapping distributions may adopt 450 

very different life-history strategies, or at least marked differences in energy allocation between 451 

growth, activity (SMR and locomotion) and reproduction (Drazen, 2002). Thus, despite the 452 

challenges of using an energetic balance approach to field studies of fish energy metabolism, 453 

important clues to the adaptation to environmental factors can come from this approach.  454 

3.5.2. Otoliths 455 

There have been attempts to link the rate of otolith growth to MR. For example, support for a 456 

linkage in Atlantic salmon (Salmo salar) was found beyond simple somatic growth; the otolith 457 

increment was linked to inter-individual differences in SMR but not growth (Wright, 1991). 458 

Follow-up studies indicated that the metabolic response to changing temperature was more 459 

pronounced than the observed otolith response (Wright et al., 2001) raising concerns about the 460 

broad field applicability of this technique. Some more detailed approaches may support otolith 461 

accretion as an indicator of growth, at least in Atlantic cod (Gadus morhua; Hüssy and Mosegaard, 462 

2004). This is still an active area of study and the architecture of otoliths may ultimately prove as 463 

a useful tool in estimating relative differences in MR across fishes. 464 

An alternative use of otoliths comes from the partitioning of stable isotopes, namely 13C and 12C. 465 

Metabolically derived CO2/HCO3
- in the blood is expected to be depleted in 13C compared with 466 

the environmental dissolved inorganic carbon and this decline in the 13C/12C, or δ13C, should be 467 

more pronounced as the rate of metabolic CO2 production increases (Kalish, 1991; Gauldie, 1996). 468 

The carbon being fixed within the otolith as calcium carbonate (CaCO3) is thought to be a mix 469 

between that in equilibrium with the environmental dissolved inorganic carbon pool and the 470 
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metabolically produced (13C depleted) CO2/HCO3
- and, despite the large net efflux of CO2, > 80% 471 

of the fixed carbon in otoliths may be from the dissolved inorganic carbon from the environmental 472 

pool (Solomon et al., 2006). Shifts in the δ13C in otoliths have been shown to relate to estimated 473 

MR, even at the microscale where annual variation in MR may occur (Dufour et al., 2007). Adding 474 

to the potential utility of otolith isotope chemistry in field estimates of MR, the levels of 18O may 475 

also provide an estimate of environmental temperature (Kalish, 1991) and determination of the 476 

δ18O (18O/16O) and δ13C in young-of-the-year Arctic charr (Salvelinus alpinus) shows support for 477 

a latitudinal gradient in growth and MR (Sinnatamby et al., 2015). The δ13C and δ18O have also 478 

been used to infer seasonal temperature cycles and MR in fossilized otoliths (Wurster and 479 

Patterson, 2003), suggesting this approach could be invaluable for archived samples. These 480 

isotopic approaches may be a valuable addition to the tools available for comparative biochemists 481 

and physiologists to study FMR in fishes, although many require further validation and may be 482 

limited in their capacity for fine temporal resolution (scale of less than months) or for precise 483 

comparisons between individuals.   484 

3.6. Integrating methods 485 

It is our position that there is currently no robust and widely applicable approach for assessing 486 

FMR in fishes; however, we feel that methods that could confidently estimate FMR in fishes would 487 

be highly beneficial. From the discussions above, it should be appreciated that while it may be 488 

possible to quantify FMR in free swimming fishes, estimates will be laden with assumptions and 489 

approximations. Validation and calibration is laborious and requires the assumption that laboratory 490 

results will recapitulate ‘field relevant’ conditions. Ideally, to assess FMR in fishes, a complete 491 

integrated value of all energy usages must be assembled. To do so would likely require combining 492 

indirect calorimetry for understanding basal costs, as well as some form of telemetry to integrate 493 

activity (locomotory) costs and possibly fh measurements, which could be compared to lab-494 

validated correlations to MR.  495 

A general strategy would be to measure the MR of individuals, then release them into a natural or 496 

semi-natural environment for behavioural observation using video recordings. Mark-recapture 497 

studies are possible but they provide a relatively coarse quantification of space use and face the 498 

potential problem of low recapture rates. Currently, the most promising approach for aligning 499 

measurements of MR with behaviour in the natural environment for fish may be to measure MR 500 
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in respirometers and then release fish into an acoustic telemetry array for spatially tracking the 501 

movements of individuals (Baktoft et al. 2016). Modern telemetry technology can provide high 502 

resolution data for inference of activity level, habitat preference, territory size and even feeding 503 

frequency.  504 

There are several potential issues common to all of these methods for attempting to correlate 505 

behavioural measures with measures of MR performed in the laboratory, even in cases where 506 

telemetry is used for measuring behaviour. First, these approaches only reflect how estimates of 507 

specific types of MR extracted from laboratory data (such as SMR) may be correlated with 508 

behaviour in free-ranging animals. They would provide no insight into the animal’s moment-to-509 

moment energy expenditure on physical activity or digestive costs. Further, and perhaps more 510 

importantly, all types of MR in fish will vary as a function of temperatures encountered in the wild 511 

(and perhaps oxygen availability in severe hypoxia (Claireaux and Lagardere, 1999)). If reaction 512 

norms for a measure such as SMR vary among individuals in response to changes in temperature 513 

(Brommer, 2013; Killen et al., 2016), relative rankings within a measured population in the 514 

laboratory at a single common temperature will not carry over to the wild in situations where there 515 

are spatial or temporal thermal fluctuations. This effect could greatly complicate attempts to relate 516 

estimates of SMR or other metabolic traits to free-ranging behaviour even in cases where the 517 

temperatures encountered by the fish are known from extrinsic or intrinsic temperature loggers.  518 

In many cases it is likely that the suggested ‘ideal’ condition of respirometry and telemetry will 519 

not be possible (though see Bakstoft et al. 2016 and Cooke et al. this issue). Nevertheless, it may 520 

still be possible to glean insight into some of the major energetic costs in field conditions based on 521 

simple ‘snap-shot’ data, even if it is not possible to get integrated estimates of actual FMR. For 522 

instance, biochemical markers (discussed below) may give insight into intraspecific growth 523 

potential, or ‘shore-based’ respirometry may allow for comparisons of SMR and MMR if the 524 

hypothesis being tested can tolerate some degree of introduced error. Measures of SMR or MMR 525 

could also be combined with swim-flume calibrated accelerometry data to understand the costs of 526 

routine activity in the field (Murchie et al. 2011). Similarly, estimates of growth and tissue/energy 527 

accretion combined with gut contents and prey energy density could provide information on the 528 

metabolic responses and energy allocation of fishes in the field, albeit this would give only a partial 529 

picture.   530 
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3.7 Expanding the energetics toolbox with indirect proxies and indices of major energy requiring 531 

processes 532 

Even if true FMR estimates are not currently possible for fish, there are several biochemical and 533 

physiological measurements that may provide a window into major energetic processes or 534 

overall energy balance in wild sampled fishes. In this section we examine several biochemical 535 

markers and techniques that may be useful as relative indices of metabolic capacity, especially 536 

under conditions where feeding success or growth rate may vary. Since basal metabolic costs 537 

(SMR) and growth are major components of the energy balance of an organism, we limit this 538 

discussion to correlates of these specific contributions to MR.   539 

3.7.1 Organ and tissue energy metabolism enzymatic indices 540 
For studies where many individuals must be sampled, for instance when comparing across 541 

populations over a wide geographical gradient, simple indicators of relative metabolic demand or 542 

capacity may be particularly useful due to high throughput and readily standardized methodologies 543 

across research groups. There has been some investigation into if the relative organ mass and tissue 544 

specific activities of energy metabolism enzymes or biochemistry could provide useful correlation 545 

to MR in fishes.  546 

It is intuitively appealing to anticipate that individuals with higher MR may also have larger organs 547 

to support metabolically demanding processes. For instance, large livers for greater allocation to 548 

biosynthesis, increased renal mass for improved clearance capacity, elevated digestive organ size 549 

and complexity to process food either more quickly or in greater bolus quantities, or enhanced 550 

cardiovascular capacity to meet increased oxygen demand. Indeed, there is some evidence for 551 

organ or muscle size being linked to MR in endotherms and this may have some utility for 552 

intraspecific comparisons (Chappell et al., 2007), but taken as a whole the data do not support a 553 

generalized relationship. Recently, it has been shown that interspecifically relative liver size relates 554 

to SMR, with the latter estimated by respirometry (Killen et al., 2016). Many species accumulate 555 

hepatic lipid stores (Pelster, 1997; Phelger, 1998) so correlations between liver size and SMR must 556 

be made cautiously, since variations in the size of those stores may confound relationships with 557 

SMR. Moreover, the intraspecific data on fishes is equivocal with some support for a correlation 558 

between MR and the summed contribution of several organs to overall mass in eels (Boldsen et 559 

al., 2013), but with no such correlation in brown trout (Norin and Malte, 2012).   560 
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Similar to relative organ mass, it may seem intuitive that key enzymes of energy metabolism 561 

should correlate with tissue level adenosine triphosphate (ATP) demand. As noted above, 562 

interspecifically there are correlations between MR and depth of occurrence, at least across benthic 563 

and benthopelagic fishes, and several muscle enzyme activities parallel that MR trend (Drazen and 564 

Seibel, 2007; Drazen et al., 2015). Generally, lactate dehydrogenase and pyruvate kinase activity 565 

in white muscle correlate with depth-related declines in MR. The activity of the mitochondrial 566 

matrix marker enzyme citrate synthase also correlates with MR but is more variable and appears 567 

to be influenced by general locomotory capacity more so than these other enzymes (Drazen et al., 568 

2015). Species lifestyle (benthic, benthopelagic or pelagic) is a potential confounding factor which 569 

should be considered in interspecific comparisons with all of these muscle metabolic enzymes. 570 

While mitochondrial enzyme activities like citrate synthase (a Krebs cycle marker enzyme) and 571 

cytochrome c oxidase (electron transport chain constituent) appear a priori as obvious choices for 572 

correlation with MR, empirical results for oxidative enzymes are mixed. Intraspecific 573 

investigations testing this hypothesis have shown results ranging from little (Norin and Malte 574 

2012) or no correlation within a population with variable intraspecific MR (Boldsen et al. 2013) 575 

to some evidence of support across fishes where MR is manipulated at the whole animal level 576 

(Mathers et al., 1992; Pelletier et al. 1993). Importantly, although oxidative enzymes may correlate 577 

with growth (and thus presumably MR), fish size and seasonality may be more significant drivers 578 

of enzyme activity (Pelletier et al., 1993). In muscle, the activity of enzymes associated with 579 

glycolysis, including phosphofructokinase, pyruvate kinase and lactate dehydrogenase, often show 580 

good correlation when growth rate of fish is manipulated by ration size and thermal regime 581 

(Mathers et al., 1992; Pelletier et al., 1994; Pelletier et al., 1995). Overall, the activity of these 582 

enzymes may be more related to the capacity of a tissue to sustain high energy demand rather than 583 

energy needs per se. 584 

The development of organ level indices that correlate with MR in fishes may be appealing due to 585 

their simplicity, but these will generally have low resolution and require species-specific 586 

laboratory validation. For developing enzymatic indices that may correlate with metabolic capacity 587 

or demand, it is important to consider what denominator to use, with per gram of tissue mass, per 588 

unit protein or per unit DNA, all being potential candidates. For further discussion see Pelletier et 589 

al. (1994; 1995). Caution is also warranted in attempts to develop relative organ mass or enzyme 590 

activities as proxies of MR because these traits may scale with body mass (Huang et al., 2013), 591 
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with relationships for muscle enzyme activities being at times complex and dependent on species 592 

and developmental stage (Somero and Childress, 1980; 1990; Hinterleitner et al., 1987). 593 

Along with the data on tissue enzyme activities, the RNA and DNA contents of tissue like white 594 

muscle may also be a useful means of estimating the growth potential and status of a fish (Sutcliffe, 595 

1965; Haines, 1973; Grant, 1996; Buckley et al., 1999, Chícharo and Chícharo, 2008), which may 596 

be linked to their MR. Indeed, in some cases, it would appear that combined measurements of 597 

these nucleic acids with enzyme activities may provide the best overall proxy of current growth 598 

potential and/or feeding status in fishes (Mathers et al., 1992; Dahlhoff, 2004). Although these 599 

patterns may not always reflect growth or feeding in all species, at least on the scale of less than 600 

several weeks (Dutil et al., 1998). By combining multiple tissue biochemical and relative mass 601 

indices, it is possible to construct models that may be sufficiently predictive of growth or condition 602 

in wild fish or open water housed fish (Guderley et al., 1996; Couture et al., 1998) that they may 603 

have utility in field-based studies.   604 

3.7.2 Whole animal and tissue rates of protein synthesis 605 
Along with the ion-motive ATPases, protein synthesis represents the most prominent consumer of 606 

cellular energy. The costs of protein synthesis have been estimated to account for 15-25% of basal 607 

metabolic costs (Carter and Houlihan, 2001; Fraser and Rogers, 2007) and possibly as much as 608 

42% in juvenile fish (Houlihan et al., 1988 but see Fuery et al., 1998). The whole-body rate of 609 

protein synthesis is strongly correlated with SMR or BMR, in endothermic and ectothermic 610 

animals respectively (Houlihan, 1991). Various biotic and abiotic factors, such as temperature, 611 

pollution, seasonality and food consumption also have a similar effect on the rate of protein 612 

synthesis and SMR (Fraser and Rogers, 2007). Finally, the rate of protein synthesis is one, if not 613 

the most responsive biological process to limited energy supply, as elegantly demonstrated by 614 

Buttgereit and Brand (1995). It is therefore appealing to consider the use whole-body protein 615 

synthesis rate as a proxy to FMR. 616 

 617 

Historically, measuring the rate of protein synthesis required the use of radioactive tracers, which 618 

is not realistic in field situation. In the last two decades, however, alternative approaches to 619 

measure the rate of protein synthesis were published and thus opened the possibility of transporting 620 

this measurement to the field with minimal complexity. Notably, three of these approaches bear 621 

great promises for use in field situation. The first approach consists in a modification of the 622 
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flooding dose technique for using stable isotope tracers. The flooding dose technique, as the name 623 

implies, consists in injecting the fish with a bolus of a labelled amino acid. After the injection, the 624 

fish is released and recaptured following a certain incorporation period. The subsequent 625 

incorporation of the tracer in the animal’s protein pool is measured. The technique originally 626 

described by Garlick et al. (1980) involved the injection of a bolus dose of phenylalanine 627 

containing tracer amounts of radioactive phenylalanine (3H-phenylalanine). Modifications of this 628 

technique to be used with stable isotopes were first published and validated in rats by Krawielitzki 629 

and Schadereit (1992) and in fish by Owen et al. (1999). These two modified techniques are based 630 

on the injection of a flooding dose of 15N-labelled amino acid tracers and subsequent determination 631 

of the incorporation rate of the tracer in the protein pool. These techniques were shown to produce 632 

results that are undistinguishable from those obtained using the original radioactive approach. 633 

However, the 15N-amino acids are seldom used in fish physiology; probably because of their 634 

inherent requirement of an isotope ratio mass spectrometer (IRMS) for the determination of the 635 

tracer’s enrichment in the protein pool. IRMS is not always readily available or accessible. More 636 

recently, a variant of the flooding dose technique using ring-D5-phenylalanine as a tracer was 637 

described (Lamarre et al., 2015). The advantage of this tracer over the 15N-tracers is that it only 638 

requires the nearly ubiquitous gas chromatography-mass spectrometry (GC-MS) to perform the 639 

measurements. Using the flooding dose technique, the rate of protein synthesis can be measured 640 

over a relatively short period of time varying from less than one hour up to several hours.  641 

 642 

The second approach that shows potential in the field is a non-isotopic technique that is based on 643 

the use of the antibiotic puromycin; the SUnSET approach (Schmidt et al., 2009). Puromycin is a 644 

structural analog of tyrosyl-tRNA that, when incorporated in the nascent protein, prevents 645 

elongation. It was demonstrated that, when used at a very low dose, puromycin incorporation into 646 

proteins is directly proportional to the rate of protein synthesis (Hansen et al., 1994; Nemoto et al., 647 

1999). Just like in the flooding dose technique, the animals must be captured, receive an injection 648 

of puromycin and then be returned to the field for a predetermined incorporation period. The 649 

animal is then recaptured for tissue sampling and the puromycin-labeled proteins detected by 650 

western blotting using a puromycin-specific antibody (Goodman and Hornberger, 2013). The 651 

SUnSET approach was shown, in rodents, to be as sensitive and accurate as the flooding dose 652 

technique but this approach remains to be tested and validated in fish. The major advantage of 653 



Field relevant metabolic measurements in fish 

21 
 

SUnSET is that it does not involve the use of isotopes and consequently, does not require mass 654 

spectrometry. The main limitation of this technique, however, is that it can only be used to measure 655 

relative rates or relative changes in protein synthesis (Goodman and Hornberger, 2013). A strategy 656 

to measure the absolute or fractional rate of protein synthesis has yet to be developed.  657 

 658 

The third approach uses deuterated water (2H2O) as a tracer. This approach was first proposed by 659 

Ussing (1941). Briefly, when 2H2O is administered to an animal, the tracer quickly equilibrates 660 

with the body water. Extensive labelling of the free amino acids occurs rapidly mainly via 661 

transamination reactions. These labelled amino acids can then become incorporated into the 662 

protein pool. Alanine is generally the amino acid being followed since it has a very high turnover 663 

and can be labelled at four sites (Gasier et al., 2010). The use of 2H2O as a tracer to measure the 664 

rate of protein synthesis in fish was recently described (Gasier et al., 2009). The fish simply need 665 

to be maintained in water containing ∼2-4% 2H2O for a period of at least 24 h. Following this 666 

period, the tissues are sampled and analyzed using a GC-MS or preferably IRMS for the 667 

incorporation of 15N-alanine into the proteins. One advantage of this technique is that the rate of 668 

protein synthesis is measured over a long period of time (24 h or more) compared to the techniques 669 

described above. This longer incorporation period ensures that short-term changes and diurnal 670 

cycles of the rate of protein synthesis, and hence of the MR, are incorporated in the measurement. 671 

There is also minimal intervention on the animal since the label is added to the water surrounding 672 

the fish instead of being injected. On the other hand, the fish must be maintained in this labeled 673 

water for an extensive period of time, which is certainly challenging in the field but not impossible. 674 

 675 

To our knowledge, the rate of protein synthesis has never been measured in fish in the field. The 676 

recent developments in non-radioactive techniques to measure the rate of protein synthesis should 677 

stimulate field biologists to consider applying it in their field studies. Of course, all of the 678 

techniques described here are only robust when they are properly validated in the species and the 679 

context of the questions being asked. It is beyond the aim of this paper to describe the proper 680 

validation of the techniques described but this information is readily available in the references 681 

provided above. Given the usefulness and biological value of the rate of protein synthesis as a 682 

proxy for MR, we speculate that it is only a matter of time before we start seeing the rate of protein 683 

synthesis of fish being measured in field studies. 684 
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  685 

3.8 Tracer-based FMR estimate: perspective approaches 686 

In the spirit of furthering discussion, we have derived a strategy that may be applicable to 687 

addressing FMR in free-swimming fishes based on isotopic tracers. The concept revolves around 688 

implanting osmotic pumps, which can deliver a volumetric payload at a constant rate of delivery 689 

up to the scale of days-to-weeks. The osmotic pump could be filled with a solution of labelled 690 

metabolic fuels, which may include glucose, palmitate, amino acids or a combination thereof. 691 

Initially, in the laboratory this would likely use 14C labelled fuels for simplicity and to avoid the 692 

natural background of stable 13C isotope that could obscure the physiological patterns we seek to 693 

quantify (rate of metabolic CO2 production or the steady-state enrichment of metabolite pools). 694 

However, the use of 13C labelled fuels could be rapidly envisioned provided the natural enrichment 695 

of 13C is measured on a blood sample taken at T0 (just before the insertion of the osmotic pump). 696 

The osmotic pump could be implanted into the peritoneal cavity (Fig. 2), which would facilitate 697 

the larger pumps required for long-term delivery of the precursors. Once active, the pump would 698 

infuse a constant supply of the labelled precursor, which would be absorbed by the fish as is seen 699 

with other intraperitoneal applications of tracers (Cowey et al., 1975; Hemre and Kahrs, 1997; 700 

Lewis et al., 2007; Lamarre et al 2015). During the initial validation, this constant tracer supply 701 

combined with serial blood sampling for plasma could facilitate determining the rate of 702 

disappearance and turnover of the tracer (Fig. 2B). This will also allow testing the impact of 703 

feeding and other biotic and abiotic influences on metabolite flux, which could be combined in 704 

some cases with indirect calorimetry. 705 

Once the temporal pattern of roughly stable systemic metabolic enrichment is established, this 706 

provides the potential window for the next phase of development; long-term collection methods 707 

that may be transferrable to the field. We propose two possible solutions, one based on plasma 708 

collection, the other the long-term integrated capture of metabolic CO2 (Fig. 2A), that in concert 709 

could lead to FMR estimates in free swimming fishes. It should be appreciated that both are 710 

completely theoretical but should be experimentally plausible. In both cases, the recapture of the 711 

fish would be essential.  712 
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3.8.1. Plasma collection  713 

The positive pressure generated by osmotic influx of water is how osmotic pumps work to deliver 714 

solutions. Therefore, it should be possible to create negative pressure within the inner impermeable 715 

chamber by inverting the osmotic gradient established within the pump. By filling the pump’s 716 

‘osmotic layer’ with a solution that is hypoosmotic to the organism’s body fluids it could be 717 

possible to establish a fluid collection vessel, rather than a delivery mechanism. By addition of a 718 

layer of dialysis membrane or similar selectively permeable material over what is usually the 719 

delivery opening, the system would prevent collection of blood cells and proteins thereby 720 

minimizing metabolic activity within the internal chamber. By implanting several pumps, with 721 

differing collection volumes and manipulation of capacity for osmotic exchange and regulation of 722 

the opening size of the inner chamber it should be possible to have differentially timed collections 723 

of body fluid (on the scale of days or possibly weeks). If these ‘reverse’ osmotic pumps can be 724 

implanted with their opening in the systemic blood supply, then serial, long-term, sampling could 725 

be achieved to assess if the integrated specific enrichment of tracers change over time, which 726 

should reflect the metabolic turnover of the compounds of interest (Fig. 2B).  727 

3.8.2. In situ collection of CO2 728 

The second approach would capitalize on enclosing a solution of strong base (e.g. 9M NaOH) 729 

within a thick membrane that is partially permeable to gaseous CO2 and implanting this either with 730 

a small region exposed to the blood (ideally in the ventral aorta) or within the peritoneal cavity. 731 

The membrane material should be relatively inert, for example silicone, and be designed to become 732 

a kinetic limitation to CO2 diffusion to the internal reservoir by being thick enough and possibly 733 

partially enclosed by gas impermeant material. The rationale of this device and its design 734 

constraints would be to slowly subsample the metabolic CO2 in circulation as the gas diffuses into 735 

the alkaline ‘trap’ within the internal reservoir on the scale of days-to-weeks. The osmotic pump 736 

would provide a constant infusion of labelled tracer, oxidation of which will lead to 14CO2 or 13CO2 737 

in equilibrium with the rest of the body fluid CO2 pools. Thus, the accumulation of labelled-CO2 738 

in the reservoir would be a function of the metabolic oxidation of the tracer precursors. By 739 

appropriate tracer selection, it should be plausible for this collection of the labelled-CO2 to reflect 740 

actual whole body metabolic labelled-CO2 production, which could be confirmed in lab via 741 

indirect calorimetry. The enrichment of labelled-C in the CO2 pool could then be measured by a 742 

scintillation counter in the case of 14C in the lab or with an IRMS when the tracer is 13C (of course 743 
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correcting for the natural abundance of organic 13C measured at T0). Altered enrichment of 13C in 744 

the otolith (3.5.2) may provide a biological alternative or validation of this alkaline trap approach.  745 

3.8.3. Challenges  746 

As noted in section 3.3 the validation of tracer turnover and kinetics studies are laborious and the 747 

above field strategies would be limited to a small number of sampling time points per individual 748 

fish once released. This low sampling could limit resolving power but given the complexities of 749 

other options to assess FMR in fishes, our speculations on following tracer carbon kinetics could 750 

be a viable alternative worth exploring. Nevertheless, even if the technological challenges of the 751 

sampling devices described in 3.8.1 and 3.8.2 were solved, there would be additional cautions and 752 

assumptions with these techniques, only a few of which we will address. Some are logistical, such 753 

as regulatory agency approval for the release of animals laden with tracers, but many are 754 

methodological. For example, can the collection devices be reasonably implanted with access to 755 

appropriate blood pools (e.g. ideally the ventral aorta prior to the gas exchange at the gills for 756 

labelled-CO2) and if not, are other body pools of fluid comparable? For the capture of labelled-757 

CO2, the peritoneal cavity may be useful since several devices might be implanted. However, this 758 

body cavity would not necessarily be acceptable for the steady-state labelled-C-tracer enrichment 759 

approach, since this will also be the point source for the tracers prior to distribution and dilution. 760 

Will the collection devices be prone to differential collection rates? This could be a significant 761 

concern and will depend on materials selection and quality control in the manufacturing process. 762 

For instance, the amount of CO2 diffusion into the alkaline trap will be a function of the pCO2 763 

gradient across the membrane as well as the membrane thickness and total surface area exposed 764 

for gaseous capture. Likewise, can the collection devices accumulate sufficient tracer or product 765 

to be quantifiable? This could only be assessed empirically.  766 

5. Future directions: a call to action 767 

In summary, we feel that there is currently a lack of widely accepted and straightforward means 768 

of measuring FMR in fishes. Comparative biochemists and physiologists are well suited to build 769 

upon the existing framework of approaches, which we have briefly reviewed, to develop robust 770 

strategies to address this important methodological gap. We anticipate that to do so will require 771 

novel technologies and the integration of multiple metabolic and physiological proxies. This will 772 

certainly increase the complexity of experimental validation and execution, but these new 773 
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techniques have the potential to greatly enhance research capacity across multiple disciplines, from 774 

metabolic biochemistry to behavioural physiology. Accurate estimates of FMR will promote a 775 

better understanding of the intricate relationships between energy and intra- and interspecific 776 

variation in fishes, and how the environment influences metabolic demands, energy allocation and 777 

life-history strategies.   778 
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 1328 
 1329 
Legends 1330 
Figure 1. Illustration of the energy budget in a fish. Energy intake as Food requires energetic 1331 
costs as specific dynamic action (SDA) and some energy will be lost from the animal as Egestion 1332 
(indigestible material and carbon not assimilated) or as nitrogenous Excretion. The remaining 1333 
energy will be used to meet the costs of life (Basal costs such as maintenance of ion gradients, 1334 
protein and DNA repair etc.) with the energy in Excess of basal requirements being allocated to 1335 
Growth/storage, Locomotion and physical work or Reproduction which can be either output as 1336 
gametes or retained as gondal investment (which can also be viewed as Growth/storage). The 1337 
Energy in, Energy out and Energy retained nomenclature are described in the text.  1338 

 1339 

Figure 2. Graphical illustration of proposed FMR strategy for fishes. A. linkage between labelled 1340 
substrates in surgically implanted osmotic pump and putative collection strategies including 1. 1341 
‘reverse’ osmotic pumps for sampling steady-state tracer enrichment (specific activity) and 2. An 1342 
alkaline ‘trap’ based measurement of integrated substrate oxidation, measured as labelled CO2 in 1343 
the reservoir trap. It would be expected that the rate of labelled CO2 appearance in the trap, 1344 
following an initial ‘loading phase’ of the whole body metabolite pool, should reflect the integrated 1345 
rate of metabolic substrate oxidation. B. Illustration of laboratory validation strategy for plasma 1346 
enrichment measurements. Following a time-lag for tracer distribution to all tissue pools there 1347 
should be a linear rate of appearance due to influx of the labelled substrate. As the labelled 1348 
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substrate(s) are oxidized the enrichment (specific activity or SA) in the plasma will reach a plateau 1349 
over time. At this plateau the rate of appearance = the rate of disappearance by oxidation. The 1350 
exponential curve that describes this time-dependent progression towards a plateau in plasma 1351 
enrichment will determine the rate constant (k) for tracer clearance. Following along the Time axis 1352 
it is illustrated how the plateau level (e.g. ~ steady state enrichment) will respond to changes in k 1353 
where clearance rate i) increases, ii) decreases or iii) is unchanged. 1354 

* The body total CO2 pool (tCO2) will be an equilibrium between ionized (e.g. HCO3
-) and non-1355 

ionized (predominantly gaseous CO2) forms of carbon dioxide. For simplicity we do not discuss 1356 
this in detail; however, since the alkaline trap strategy will only collect a fraction of the gaseous 1357 
CO2 it is assumed that the metabolically derived carbon dioxide pools have been fully 1358 
equilibrated due to spontaneous and enzymatic reactions. 1359 

 1360 
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Figure 1. Illustration of the energy budget in a fish.  1364 
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Figure 2. Graphical illustration of proposed laboratory validation of FMR strategy for fishes.  1368 
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