151 research outputs found

    A Balance of Lipid-Sensing Mechanisms in the Brain and Liver

    Get PDF
    Recent work has cast a spotlight on the brain as a nutrient-sensing organ that regulates the body's metabolic processes. Here we discuss the physiological and molecular mechanisms of brain lipid sensing and compare these mechanisms to liver lipid sensing. A direct comparison between the lipid-sensing mechanisms in the brain and liver reveals similar biochemical/molecular but opposing physiological mechanisms in operation. We propose that an imbalance between the lipid-sensing mechanisms in the brain and liver may contribute to obesity-associated type 2 diabetes

    Hypothalamic AMP-Activated Protein Kinase Regulates Glucose Production

    Get PDF
    OBJECTIVE—The fuel sensor AMP-activated protein kinase (AMPK) in the hypothalamus regulates energy homeostasis by sensing nutritional and hormonal signals. However, the role of hypothalamic AMPK in glucose production regulation remains to be elucidated. We hypothesize that bidirectional changes in hypothalamic AMPK activity alter glucose production. RESEARCH DESIGN AND METHODS—To introduce bidirec-tional changes in hypothalamic AMPK activity in vivo, we first knocked down hypothalamic AMPK activity in male Sprague-Dawley rats by either injecting an adenovirus expressing the dominant-negative form of AMPK (Ad-DN AMPK2 [D157A]) or infusing AMPK inhibitor compound C directly into the medio-basal hypothalamus. Next, we independently activated hypotha-lamic AMPK by delivering either an adenovirus expressing the constitutive active form of AMPK (Ad-CA AMPK1312 [T172D]

    Hypothalamic Protein Kinase C Regulates Glucose Production

    Get PDF
    OBJECTIVE—A selective rise in hypothalamic lipid metabolism and the subsequent activation of SUR1/Kir6.2 ATP-sensitive K+ (KATP) channels inhibit hepatic glucose production. The mechanisms that link the ability of hypothalamic lipid metabolism to the activation of KATP channels remain unknown

    How do cities approach policy innovation and policy learning? A study of 30 policies in Northern Europe and North America

    No full text
    This paper reports on a study of current practice in policy transfer, and ways in which its effectiveness can be increased. A literature review identifies important factors in examining the transfer of policies. Results of interviews in eleven cities in Northern Europe and North America investigate these factors further. The principal motivations for policy transfer were strategic need and curiosity. Local officials and politicians dominated the process of initiating policy transfer, and local officials were also the leading players in transferring experience. A range of information sources are used in the search process but human interaction was the most important source of learning for two main reasons. First, there is too much information available through the Internet and the search techniques are not seen to be wholly effective in identifying the necessary information. Secondly, the information available on websites, portals and even good practice guides is not seen to be of mixed quality with risks of focussing only on successful implementation and therefore subject to some bias. Officials therefore rely on their trusted networks of peers for lessons as here they can access the ‘real implementation’ story and the unwritten lessons. Organisations which have a culture that is supportive of learning from elsewhere had strong and broad networks of external contacts and resourced their development whilst others are more insular or inward looking and reluctant to invest in policy lessons from elsewhere. Solutions to the problems identified in the evidence base are proposed

    Approximate k-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry

    Full text link
    Using an approximation scheme to deal with the centrifugal (pseudo-centrifugal) term, we solve the Dirac equation with the screened Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number {\kappa}. Based on the spin and pseudospin symmetry, analytic bound state energy spectrum formulas and their corresponding upper- and lower-spinor components of two Dirac particles are obtained using a shortcut of the Nikiforov-Uvarov method. We find a wide range of permissible values for the spin symmetry constant C_{s} from the valence energy spectrum of particle and also for pseudospin symmetry constant C_{ps} from the hole energy spectrum of antiparticle. Further, we show that the present potential interaction becomes less (more) attractive for a long (short) range screening parameter {\alpha}. To remove the degeneracies in energy levels we consider the spin and pseudospin solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A few special cases such as the exact spin (pseudospin) symmetry Dirac-Yukawa, the Yukawa plus centrifugal-like potentials, the limit when {\alpha} becomes zero (Coulomb potential field) and the non-relativistic limit of our solution are studied. The nonrelativistic solutions are compared with those obtained by other methods.Comment: 21 pages, 6 figure

    Direct Numerical Simulation of Turbulent Heat Transfer Modulation in Micro-Dispersed Channel Flow

    Full text link
    The object of this paper is to study the influence of dispersed micrometer size particles on turbulent heat transfer mechanisms in wall-bounded flows. The strategic target of the current research is to set up a methodology to size and design new-concept heat transfer fluids with properties given by those of the base fluid modulated by the presence of dynamically-interacting, suitably-chosen, discrete micro- and nano- particles. We run Direct Numerical Simulation (DNS) for hydrodynamically fully-developed, thermally-developing turbulent channel flow at shear Reynolds number Re=150 and Prandtl number Pr=3, and we tracked two large swarms of particles, characterized by different inertia and thermal inertia. Preliminary results on velocity and temperature statistics for both phases show that, with respect to single-phase flow, heat transfer fluxes at the walls increase by roughly 2% when the flow is laden with the smaller particles, which exhibit a rather persistent stability against non-homogeneous distribution and near-wall concentration. An opposite trend (slight heat transfer flux decrease) is observed when the larger particles are dispersed into the flow. These results are consistent with previous experimental findings and are discussed in the frame of the current research activities in the field. Future developments are also outlined.Comment: Pages: 305-32

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →ΌâșΌ⁻KâșK⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF
    • 

    corecore