7 research outputs found

    Evaluation of wound healing and antimicrobial potentials of Ixora coccinea root extract

    Get PDF
    AbstractObjectiveTo evaluate the wound healing and antimicrobial activity of root extracts of Ixora coccinea (I. coccinea).MethodsTo investigate the wound healing efficacy of root extract of I. coccinea Linn, five groups of animals were divided each containing six animals. Two wound models including incision and excision wound models were used in this study. The parameters studied were tensile strength on incision wound model and in terms of wound contraction for excision wound model were compared with standard Nitrofurazone (NFZ) ointment (0.2% w/w). Six extracts (ethanol, aqueous, petroleum ether, benzene, chloroform and ethyl acetate) of I. coccinea were screened for in vitro growth inhibiting activity against different bacterial strains viz, Staphylococcus aureus, Bacillus pumilius, Enterococcus faecalis, Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa and fungi Candida albicans and Aspergillus niger were compared with the standard drugs ciprofloxacin and chloramphenicol for antibacterial and griseofulvin for antifungal screening. The serial dilution and cup (or) well plate methods were used for the antimicrobial study and MIC was determined.ResultsThe ethanolic extract showed significant (P<0.001) wound healing activity when compared to standard drug NFZ with respect to normal control group. Amongst all, ethanolic extract showed highly significant antibacterial activity against all bacterial strains used in this study when compared to standard. The aqueous extract showed moderate significant inhibition against all bacterial strains when compared to standard. All the extracts were shown negligible activity against the fungal strains used in this study.ConclusionsThe ethanolic root extract of I. coccinea showed pronounced wound healing and antibacterial activity. The probable reason to heal the wound was that the external application of the extract prevented the microbes to invade through the wound thus the protection of wound occurs against the infection of the various organisms

    Photocatalytic Hydrogen Evolution from Water Splitting Using Core-Shell Structured Cu/ZnS/COF Composites

    No full text
    Hydrogen is considered to be a very efficient and clean fuel since it is a renewable and non-polluting gas with a high energy density; thus, it has drawn much attention as an alternative fuel, in order to alleviate the issue of global warming caused by the excess use of fossil fuels. In this work, a novel Cu/ZnS/COF composite photocatalyst with a core&ndash;shell structure was synthesized for photocatalytic hydrogen production via water splitting. The Cu/ZnS/COF microspheres formed by Cu/ZnS crystal aggregation were covered by a microporous thin-film COF with a porous network structure, where COF was also modified by the dual-effective redox sites of C=O and N=N. The photocatalytic hydrogen production results showed that the hydrogen production rate reached 278.4 &micro;mol g&minus;1 h&minus;1, which may be attributed to its special structure, which has a large number of active sites, a more negative conduction band than the reduction of H+ to H2, and the ability to inhibit the recombination of electron&ndash;hole pairs. Finally, a possible mechanism was proposed to effectively explain the improved photocatalytic performance of the photocatalytic system. The present work provides a new concept, in order to construct a highly efficient hydrogen production catalyst and broaden the applications of ZnS-based materials

    Recent Advances in Hydrogen Production Using MXenes-based Metal Sulfide Photocatalysts

    Full text link
    At present, the composition and crystalline structure of transition metal nitrides or carbides (MXenes) and their derivatives are continuously expanding due to their unique physicochemical properties, especially in the photocatalytic field. Advances over the past four&nbsp;years have led to improved preparation of new MAX phases, resulting in new MXenes with excellent photo-thermal effect, considerable specific surface area, long-term stability and optimum activity. Since MXenes have good electrical conductivity and their bandgap is adjustable under the visible light range, this group is one of the best promising candidates for hydrogen production from photo-splitting of water as an environment-friendly method of converting sunlight to chemical energy. Progress in noble metal-free photocatalyst associated with more understanding of the fundamental mechanism of photocatalysis has enabled a proper choice of cocatalyst with better efficiency. In this study, the photocatalytic production of hydrogen through MXens as a support and co-catalyst on metal sulfide is summarized and discussed. Recent advances in the design and synthesis of MXenes-based metal sulfide nanocomposites to increase the efficiency of photocatalytic hydrogen production are then highlighted. Finally, the challenges and future prospects for the development of MXenes-based metal sulfide composites are outlined

    High Response CO Sensor Based on a Polyaniline/SnO<sub>2</sub> Nanocomposite

    No full text
    A polyaniline (PANI)/tin oxide (SnO2) composite for a CO sensor was fabricated using a composite film composed of SnO2 nanoparticles and PANI deposition in the present study. Tin oxide nanoparticles were synthesized by the sol-gel method. The SnO2 nanoparticles provided a high surface area to significantly enhance the response to the change in CO concentration at low operating temperature (&lt;75 &#176;C). The excellent sensor response was mainly attributed to the relatively good properties of PANI in the redox reaction during sensing, which produced a great resistance difference between the air and CO gas at low operating temperature. Therefore, the combination of n-type SnO2 nanoparticles with a high surface area and a thick film of conductive PANI is an effective strategy to design a high-performance CO gas sensor
    corecore