35 research outputs found

    Sensor characterization for multisensor odor-discrimination system

    Full text link
    In recent years, with the advent of new and cheaper sensors, the use of olfactory systems in homes, industries, and hospitals has a new start. Multisensor systems can improve the ability to distinguish between complex mixtures of volatile substances. To develop multisensor systems that are accurate and reliable, it is important to take into account the anomalies that may arise because of electronic instabilities, types of sensors, and air flow. In this approach, 32 metal oxide semiconductor sensors of 7 different types and operating at different temperatures have been used to develop a multisensor olfactory system. Each type of sensor has been characterized to select the most suitable temperature combinations. In addition, a prechamber has been designed to ensure a good air flow from the sample to the sensing area. The multisensor system has been tested with good results to perform multidimensional information detection of two fruits, based on obtaining sensor matrix data, extracting three features parameters from each sensor curve and using these parameters as the input to a pattern recognition system. (C) 2012 Elsevier B.V. All rights reserved.Cueto Belchí, AD.; Rothpfeffer, N.; Pelegrí Sebastiá, J.; Chilo, J.; García Rodríguez, D.; Sogorb Devesa, TC. (2013). Sensor characterization for multisensor odor-discrimination system. Sensors and Actuators A: Physical. 191:68-72. doi:10.1016/j.sna.2012.11.039S687219

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Chemical degumming of canola oils

    No full text
    corecore