2,800 research outputs found
Multifrequency VLA observations of the FR I radio galaxy 3C 31: morphology, spectrum and magnetic field
We present high-quality VLA images of the FR I radio galaxy 3C 31 in the
frequency range 1365 to 8440 MHz with angular resolutions from 0.25 to 40
arcsec. Our new images reveal complex, well resolved filamentary substructure
in the radio jets and tails. We also use these images to explore the spectral
structure of 3C 31 on large and small scales. We infer the apparent magnetic
field structure by correcting for Faraday rotation. Some of the intensity
substructure in the jets is clearly related to structure in their apparent
magnetic field: there are arcs of emission where the degree of linear
polarization increases, with the apparent magnetic field parallel to the ridges
of the arcs. The spectral indices are significantly steeper (0.62) within 7
arcsec of the nucleus than between 7 and 50 arcsec (0.52 - 0.57). The spectra
of the jet edges are also slightly flatter than the average for their
surroundings. At larger distances, the jets are clearly delimited from
surrounding larger-scale emission both by their flatter radio spectra and by
sharp brightness gradients. The spectral index of 0.62 in the first 7 arcsec of
3C 31's jets is very close to that found in other FR I galaxies where their
jets first brighten in the radio and where X-ray synchrotron emission is most
prominent. Farther from the nucleus, where the spectra flatten, X-ray emission
is fainter relative to the radio. The brightest X-ray emission from FR I jets
is therefore not associated with the flattest radio spectra, but with a
particle-acceleration process whose characteristic energy index is 2.24. The
spectral flattening with distance from the nucleus occurs where our
relativistic jet models require deceleration, and the flatter-spectra at the
jet edges may be associated with transverse velocity shear. (Slightly abridged)Comment: 17 pages, 13 figures, accepted for publication in MNRA
International Scoping Study (ISS) for a future neutrino factory and Super-Beam facility. Detectors and flux instrumentation for future neutrino facilities
This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino detector (MIND) is the baseline to detect the wrong sign muon final states (golden channel) at a high energy (20-50 GeV) neutrino factory from muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve degeneracies that appear in the delta-theta(13) parameter space
Special Theory of Relativity through the Doppler Effect
We present the special theory of relativity taking the Doppler effect as the
starting point, and derive several of its main effects, such as time dilation,
length contraction, addition of velocities, and the mass-energy relation, and
assuming energy and momentum conservation, we discuss how to introduce the
4-momentum in a natural way. We also use the Doppler effect to explain the
"twin paradox", and its version on a cylinder. As a by-product we discuss
Bell's spaceship paradox, and the Lorentz transformation for arbitrary
velocities in one dimension.Comment: 20 pages, 1 figur
Concurrent Specification and Timing Analysis of Digital Hardware using SDL (extended version)
Digital hardware is treated as a collection of interacting parallel components. This permits the use of a standard formal technique for specification and analysis of circuit designs. The ANISEED method (Analysis In SDL Enhancing Electronic Design) is presented for specifying and analysing timing characteristics of hardware designs using SDL (Specification and Description Language). A signal carries a binary value and an optional time-stamp. Components and circuit designs are instances of block types in library packages. The library contains specifications of typical components in single/multi-bit and untimed/timed forms. Timing may be specified at an abstract, behavioural or structural level. Timing properties are investigated using an SDL simulator or validator. Consistency of temporal and functional aspects may be assessed between designs at different levels of detail. Timing characteristics of a design may also be inferred from validator traces. A variety of examples is used, ranging from a simple gate specification to realistic examples drawn from a standard hardware verification benchmark
The XMM-Newton Detection of Diffuse Inverse Compton X-rays from Lobes of the FR-II Radio Galaxy 3C98
The XMM-Newton observation of the nearby FR-II radio galaxy 3C 98 is
reported. In two exposures on the target, faint diffuse X-ray emission
associated with the radio lobes was significantly detected, together with a
bright X-ray active nucleus, of which the 2 -- 10 keV intrinsic luminosity is
(4 -- 8) \times 10^{42} erg s-1. The EPIC spectra of the northern and southern
lobes are reproduced by a single power law model modified by the Galactic
absorption, with a photon index of 2.2-0.5+0.6 and 1.7-0.6+0.7 respectively.
These indices are consistent with that of the radio synchrotron spectrum, 1.73
+- 0.01 The luminosity of the northern and southern lobes are measured to be
8.3-2.6+3.3 \times 10^{40} erg s-1 and 9.2-4.3+5.7 \times 10^{40} erg s-1,
respectively, in the 0.7 -- 7 keV range. The diffuse X-ray emission is
interpreted as an inverse-Compton emission, produced when the
synchrotron-emitting energetic electrons in the lobes scatter off the cosmic
microwave background photons. The magnetic field in the lobes is calculated to
be about 1.7 \mu G, which is about 2.5 times lower than the value estimated
under the minimum energy condition. The energy density of the electrons is
inferred to exceed that in the magnetic fields by a factor of 40 -- 50.Comment: 23 pages, 7 figures. Accepted for publication in the Astrophysical
Journa
Toroidal magnetized iron neutrino detector for a neutrino factory
A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this paper, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large θ13. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent δCP reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of δCP
The Golden Channel at a Neutrino Factory revisited: improved sensitivities from a Magnetised Iron Neutrino Detector
This paper describes the performance and sensitivity to neutrino mixing
parameters of a Magnetised Iron Neutrino Detector (MIND) at a Neutrino Factory
with a neutrino beam created from the decay of 10 GeV muons. Specifically, it
is concerned with the ability of such a detector to detect muons of the
opposite sign to those stored (wrong-sign muons) while suppressing
contamination of the signal from the interactions of other neutrino species in
the beam. A new more realistic simulation and analysis, which improves the
efficiency of this detector at low energies, has been developed using the GENIE
neutrino event generator and the GEANT4 simulation toolkit. Low energy neutrino
events down to 1 GeV were selected, while reducing backgrounds to the
level. Signal efficiency plateaus of ~60% for and ~70% for
events were achieved starting at ~5 GeV. Contamination from the
oscillation channel was studied for the first
time and was found to be at the level between 1% and 4%. Full response matrices
are supplied for all the signal and background channels from 1 GeV to 10 GeV.
The sensitivity of an experiment involving a MIND detector of 100 ktonnes at
2000 km from the Neutrino Factory is calculated for the case of . For this value of , the accuracy in the
measurement of the CP violating phase is estimated to be , depending on the value of ,
the CP coverage at is 85% and the mass hierarchy would be determined
with better than level for all values of
Radio Jet-Ambient Medium Interactions on Parsec Scales in the Blazar 1055+018
As part of our study of the magnetic fields of AGN we have recently observed
a large sample of blazars with the Very Long Baseline Array. Here we report the
discovery of a striking two-component jet in the source 1055+018, consisting of
an inner spine with a transverse magnetic field, and a fragmentary but distinct
boundary layer with a longitudinal magnetic field. The polarization
distribution in the spine strongly supports shocked-jet models while that in
the boundary layer suggests interaction with the surrounding medium. This
behavior suggests a new way to understand the differing polarization properties
of strong- and weak-lined blazars.Comment: LaTex; 10 pages; 6 figures; reference fix; to appear in ApJL, 518,
1999 June 2
A simple test for the existence of two accretion modes in Active Galactic Nuclei
By analogy to the different accretion states observed in black-hole X-ray
binaries (BHXBs), it appears plausible that accretion disks in active galactic
nuclei (AGN) undergo a state transition between a radiatively efficient and
inefficient accretion flow. If the radiative efficiency changes at some
critical accretion rate, there will be a change in the distribution of black
hole masses and bolometric luminosities at the corresponding transition
luminosity. To test this prediction, I consider the joint distribution of AGN
black hole masses and bolometric luminosities for a sample taken from the
literature. The small number of objects with low Eddington-scaled accretion
rates mdot < 0.01 and black hole masses Mbh < 10^9 Msun constitutes tentative
evidence for the existence of such a transition in AGN. Selection effects, in
particular those associated with flux-limited samples, systematically exclude
objects in particular regions of the black hole mass-luminosity plane.
Therefore, they require particular attention in the analysis of distributions
of black hole mass, bolometric luminosity, and derived quantities like the
accretion rate. I suggest further observational tests of the BHXB-AGN
unification scheme which are based on the jet domination of the energy output
of BHXBs in the hard state, and on the possible equivalence of BHXB in the very
high (or "steep power-law") state showing ejections and efficiently accreting
quasars and radio galaxies with powerful radio jets.Comment: Accepted by ApJ; 14 pages, 4 figures, uses emulateap
Factors affecting metal mobilisation during oxidation of sulphidic, sandy wetland substrates
Most metals accumulate as sulphides under anoxic conditions in wetland substrates, reducing their bioavailability due to the solubility of metal sulphides. However, upon oxidation of these sulphides when the substrate is occasionally oxidised, metals can be released from the solid phase to the pore water or overlaying surface water. This release can be affected by the presence of carbonates, organic matter and clay. We compared changes of Cd, Cu and Zn mobility (CaCl2 extraction) during oxidation of a carbonate-rich and a carbonate-poor sulphidic, sandy wetland substrate. In addition, we studied how clay with low and high cation sorption capacity (bentonite and kaolinite, respectively) and organic matter (peat) can counteract Cd, Cu and Zn release during oxidation of both carbonate-rich and carbonate-poor sulphidic sediments. CaCl2-extractability of Cu, a measure for its availability, is low in both carbonate-poor and carbonate-rich substrates, whereas its variability is high. The availability of Cd and Zn is much higher and increases when peat is supplied to carbonate-poor substrates. A strong reduction of Cd and Zn extractability is observed when clay is added to carbonate-poor substrates. This reduction depends on the clay type. Most observations could be explained taking into account pH differences between treatments, with kaolinite resulting in a lower pH in comparison to bentonite. These pH differences affect the presence and characteristics of dissolved organic carbon and the metal speciation, which in turns affects the interaction of metals with the solid soil phase. In carbonate-rich substrates, Cd and Zn availability is lower and the effects of peat and clay amendment are less clear. The latter can also be attributed to the high pH and lack of pH differences between treatments
- …