2 research outputs found

    Endosomal cargo recycling mediated by Gpa1 and phosphatidylinositol 3-kinase is inhibited by glucose starvation

    Get PDF
    Cell surface protein trafficking is regulated in response to nutrient availability, with multiple pathways directing surface membrane proteins to the lysosome for degradation in response to suboptimal extracellular nutrients. Internalized protein and lipid cargoes recycle back to the surface efficiently in glucose-replete conditions, but this trafficking is attenuated following glucose starvation. We find that cells with either reduced or hyperactive phosphatidylinositol 3-kinase (PI3K) activity are defective for endosome to surface recycling. Furthermore, we find that the yeast Gα subunit Gpa1, an endosomal PI3K effector, is required for surface recycling of cargoes. Following glucose starvation, mRNA and protein levels of a distinct Gα subunit Gpa2 are elevated following nuclear translocation of Mig1, which inhibits recycling of various cargoes. As Gpa1 and Gpa2 interact at the surface where Gpa2 concentrates during glucose starvation, we propose that this disrupts PI3K activity required for recycling, potentially diverting Gpa1 to the surface and interfering with its endosomal role in recycling. In support of this model, glucose starvation and overexpression of Gpa2 alter PI3K endosomal phosphoinositide production. Glucose deprivation therefore triggers a survival mechanism to increase retention of surface cargoes in endosomes and promote their lysosomal degradation

    Endosomal trafficking of yeast membrane proteins

    No full text
    Various membrane trafficking pathways transport molecules through the endosomal system of eukaryotic cells, where trafficking decisions control the localisation and activity of a diverse repertoire of membrane protein cargoes. The budding yeast Saccharomyces cerevisiae has been used to discover and define many mechanisms that regulate conserved features of endosomal trafficking. Internalised surface membrane proteins first localise to endosomes before sorting to other compartments. Ubiquitination of endosomal membrane proteins is a signal for their degradation. Ubiquitinated cargoes are recognised by the endosomal sorting complex required for transport (ESCRT) apparatus, which mediate sorting through the multivesicular body pathway to the lysosome for degradation. Proteins that are not destined for degradation can be recycled to other intracellular compartments, such as the Golgi and the plasma membrane. In this review, we discuss recent developments elucidating the mechanisms that drive membrane protein degradation and recycling pathways in yeast
    corecore