20 research outputs found

    The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-Forming Region

    Get PDF
    This is the final version. Available from American Astronomical Society / IOP Publishing via the DOI in this record.We present the POL-2 850 um linear polarization map of the Barnard 1 clump in the Perseus molecular cloud complex from the B-fields In STar-forming Region Observations (BISTRO) survey at the James Clerk Maxwell Telescope. We find a trend of decreasing polarization fraction as a function of total intensity, which we link to depolarization effects towards higher density regions of the cloud. We then use the polarization data at 850 um to infer the plane-of-sky orientation of the large-scale magnetic field in Barnard 1. This magnetic field runs North-South across most of the cloud, with the exception of B1-c where it turns more East-West. From the dispersion of polarization angles, we calculate a turbulence correlation length of 5.0 +/- 2.5 arcsec (1500 au), and a turbulent-to-total magnetic energy ratio of 0.5 +/- 0.3 inside the cloud. We combine this turbulent-to-total magnetic energy ratio with observations of NH3 molecular lines from the Green Bank Ammonia Survey (GAS) to estimate the strength of the plane-of-sky component of the magnetic field through the Davis-Chandrasekhar-Fermi method. With a plane-of-sky amplitude of 120 +/- 60 uG and a criticality criterion lambda_c = 3.0 +/- 1.5, we find that Barnard 1 is a supercritical molecular cloud with a magnetic field nearly dominated by its turbulent component.National Research Foundation of Korea (NRF)National Key R&D Program of ChinaNational Natural Science Foundation of China (NSFC

    JCMT BISTRO Observations: Magnetic Field Morphology of Bubbles Associated with NGC 6334

    Get PDF
    We study the Hii regions associated with the NGC 6334 molecular cloud observed in the submillimeter and taken as part of the B-fields In STar-forming Region Observations Survey. In particular, we investigate the polarization patterns and magnetic field morphologies associated with these Hii regions. Through polarization pattern and pressure calculation analyses, several of these bubbles indicate that the gas and magnetic field lines have been pushed away from the bubble, toward an almost tangential (to the bubble) magnetic field morphology. In the densest part of NGC 6334, where the magnetic field morphology is similar to an hourglass, the polarization observations do not exhibit observable impact from Hii regions. We detect two nested radial polarization patterns in a bubble to the south of NGC 6334 that correspond to the previously observed bipolar structure in this bubble. Finally, using the results of this study, we present steps (incorporating computer vision; circular Hough transform) that can be used in future studies to identify bubbles that have physically impacted magnetic field lines

    The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333

    Get PDF
    We present new observations of the active star formation region NGC 1333 in the Perseus molecular cloud complex from the James Clerk Maxwell Telescope B-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. The BISTRO data cover the entire NGC 1333 complex (~1.5 pc × 2 pc) at 0.02 pc resolution and spatially resolve the polarized emission from individual filamentary structures for the first time. The inferred magnetic field structure is complex as a whole, with each individual filament aligned at different position angles relative to the local field orientation. We combine the BISTRO data with low- and high- resolution data derived from Planck and interferometers to study the multiscale magnetic field structure in this region. The magnetic field morphology drastically changes below a scale of ~1 pc and remains continuous from the scales of filaments (~0.1 pc) to that of protostellar envelopes (~0.005 pc or ~1000 au). Finally, we construct simple models in which we assume that the magnetic field is always perpendicular to the long axis of the filaments. We demonstrate that the observed variation of the relative orientation between the filament axes and the magnetic field angles are well reproduced by this model, taking into account the projection effects of the magnetic field and filaments relative to the plane of the sky. These projection effects may explain the apparent complexity of the magnetic field structure observed at the resolution of BISTRO data toward the filament network

    First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt

    Get PDF
    We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions that the survey will aim to answer. The most important of these is the role of magnetic fields in the star formation process on the scale of individual filaments and cores in dense regions. We describe the data acquisition and reduction processes for POL-2, demonstrating both repeatability and consistency with previous data. We present a first-look analysis of the first results from the BISTRO survey in the OMC 1 region. We see that the magnetic field lies approximately perpendicular to the famous "integral filament" in the densest regions of that filament. Furthermore, we see an "hourglass" magnetic field morphology extending beyond the densest region of the integral filament into the less-dense surrounding material, and discuss possible causes for this. We also discuss the more complex morphology seen along the Orion Bar region. We examine the morphology of the field along the lower-density northeastern filament. We find consistency with previous theoretical models that predict magnetic fields lying parallel to low-density, non-self-gravitating filaments, and perpendicular to higher-density, self-gravitating filaments.Includes Horizon 2020 and STFC

    A First Look at BISTRO Observations of the rho Oph-A core

    Get PDF
    We present 850 ÎŒm imaging polarimetry data of the ρ Oph-A core taken with the Submillimeter Common-User Bolometer Array-2 (SCUBA-2) and its polarimeter (POL-2) as part of our ongoing survey project, B{\boldsymbol{B}}-fields In STar forming RegiOns (BISTRO). The polarization vectors are used to identify the orientation of the magnetic field projected on the plane of the sky at a resolution of 0.01 pc. We identify 10 subregions with distinct polarization fractions and angles in the 0.2 pc ρ Oph-A core; some of them can be part of a coherent magnetic field structure in the ρ Oph region. The results are consistent with previous observations of the brightest regions of ρ Oph-A, where the degrees of polarization are at a level of a few percent, but our data reveal for the first time the magnetic field structures in the fainter regions surrounding the core where the degree of polarization is much higher (>5%). A comparison with previous near-infrared polarimetric data shows that there are several magnetic field components that are consistent at near-infrared and submillimeter wavelengths. Using the Davis–Chandrasekhar–Fermi method, we also derive magnetic field strengths in several subcore regions, which range from approximately 0.2 to 5 mG. We also find a correlation between the magnetic field orientations projected on the sky and the core centroid velocity components

    The JCMT BISTRO Survey: The Magnetic Field in the Starless Core rho Ophiuchus C

    Get PDF
    We report 850 ÎŒm dust polarization observations of a low-mass (~12 M ⊙) starless core in the ρ Ophiuchus cloud, Ophiuchus C, made with the POL-2 instrument on the James Clerk Maxwell Telescope (JCMT) as part of the JCMT B-fields In STar-forming Region Observations survey. We detect an ordered magnetic field projected on the plane of the sky in the starless core. The magnetic field across the ~0.1 pc core shows a predominant northeast–southwest orientation centering between ~40° and ~100°, indicating that the field in the core is well aligned with the magnetic field in lower-density regions of the cloud probed by near-infrared observations and also the cloud-scale magnetic field traced by Planck observations. The polarization percentage (P) decreases with increasing total intensity (I), with a power-law index of −1.03 ± 0.05. We estimate the plane-of-sky field strength (B pos) using modified Davis–Chandrasekhar–Fermi methods based on structure function (SF), autocorrelation function (ACF), and unsharp masking (UM) analyses. We find that the estimates from the SF, ACF, and UM methods yield strengths of 103 ± 46 ÎŒG, 136 ± 69 ÎŒG, and 213 ± 115 ÎŒG, respectively. Our calculations suggest that the Ophiuchus C core is near magnetically critical or slightly magnetically supercritical (i.e., unstable to collapse). The total magnetic energy calculated from the SF method is comparable to the turbulent energy in Ophiuchus C, while the ACF method and the UM method only set upper limits for the total magnetic energy because of large uncertainties

    The JCMT BISTRO Survey: The Magnetic Field in the Starless Core ρ Ophiuchus C

    Get PDF
    We report 850 ÎŒm dust polarization observations of a low-mass (~12 M ⊙) starless core in the ρ Ophiuchus cloud, Ophiuchus C, made with the POL-2 instrument on the James Clerk Maxwell Telescope (JCMT) as part of the JCMT B-fields In STar-forming Region Observations survey. We detect an ordered magnetic field projected on the plane of the sky in the starless core. The magnetic field across the ~0.1 pc core shows a predominant northeast–southwest orientation centering between ~40° and ~100°, indicating that the field in the core is well aligned with the magnetic field in lower-density regions of the cloud probed by near-infrared observations and also the cloud-scale magnetic field traced by Planck observations. The polarization percentage (P) decreases with increasing total intensity (I), with a power-law index of −1.03 ± 0.05. We estimate the plane-of-sky field strength (B pos) using modified Davis–Chandrasekhar–Fermi methods based on structure function (SF), autocorrelation function (ACF), and unsharp masking (UM) analyses. We find that the estimates from the SF, ACF, and UM methods yield strengths of 103 ± 46 ÎŒG, 136 ± 69 ÎŒG, and 213 ± 115 ÎŒG, respectively. Our calculations suggest that the Ophiuchus C core is near magnetically critical or slightly magnetically supercritical (i.e., unstable to collapse). The total magnetic energy calculated from the SF method is comparable to the turbulent energy in Ophiuchus C, while the ACF method and the UM method only set upper limits for the total magnetic energy because of large uncertainties

    Hearing loss in Chinese school children with Down syndrome

    No full text
    Objective: There is well-documented evidence in the literature concerning a high prevalence of deafness in children with Down syndrome (DS). The aim of this study was to examine the extent of hearing impairment and address the rehabilitation needs of a Chinese population with DS who were either in special schools or integrated into mainstream schools. Methods: This study screened 92 children with DS at their own schools and 11 were reassessed in the University of Hong Kong Hearing Centre. Hearing status of the children with DS was analyzed on the basis of their screening and reassessment results for tympanometric, transient evoked otoacoustic emission (TEOAE) and pure tone audiometric examinations. Results: A high point prevalence of hearing impairment (78% by ears or 90% by participants) in a Chinese school-aged sample of children with DS was noted. The most common degree of loss was mild to moderate. No significant gender difference, age effect or ear asymmetry was found for tympanometric failure or absence of TEOAE. An unfavorable mean speech intelligibility index score (0.2) was found for this group of children. Conclusions: Sound field amplification and suitable acoustic modifications to classrooms were recommended for Chinese children with DS in Hong Kong to improve their listening and learning environment. The point prevalence of hearing impairment in older children with DS in this study was in contrast to a previous local study on a younger age group. Further effort is needed to determine the role of possible aging effects on the type and prevalence of hearing impairment in populations with DS. © 2007 Elsevier Ireland Ltd. All rights reserved.link_to_subscribed_fulltex
    corecore