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Abstract

We report 850μm dust polarization observations of a low-mass (∼12 Me) starless core in the ρ Ophiuchus cloud,
Ophiuchus C, made with the POL-2 instrument on the James Clerk Maxwell Telescope (JCMT) as part of the
JCMT B-fields In STar-forming Region Observations survey. We detect an ordered magnetic field projected on the
plane of the sky in the starless core. The magnetic field across the ∼0.1pc core shows a predominant northeast–
southwest orientation centering between ∼40° and ∼100°, indicating that the field in the core is well aligned with
the magnetic field in lower-density regions of the cloud probed by near-infrared observations and also the cloud-
scale magnetic field traced by Planck observations. The polarization percentage (P) decreases with increasing total
intensity (I), with a power-law index of −1.03±0.05. We estimate the plane-of-sky field strength (Bpos) using
modified Davis–Chandrasekhar–Fermi methods based on structure function (SF), autocorrelation function (ACF),
and unsharp masking (UM) analyses. We find that the estimates from the SF, ACF, and UM methods yield
strengths of 103±46 μG, 136±69 μG, and 213±115 μG, respectively. Our calculations suggest that the
Ophiuchus C core is near magnetically critical or slightly magnetically supercritical (i.e., unstable to collapse).
The total magnetic energy calculated from the SF method is comparable to the turbulent energy in Ophiuchus C,
while the ACF method and the UM method only set upper limits for the total magnetic energy because of large
uncertainties.

Key words: ISM: individual objects (Ophiuchus) – magnetic fields – polarization – stars: formation

1. Introduction

The role of magnetic fields (B-fields) has long been a hot
topic under debate in star formation studies (Crutcher 2012).
There are two major classes of star formation theories that
significantly differ in the role played by magnetic fields.
“Strong magnetic field models” suggest that molecular clouds
are supported by magnetic fields, which quasi-statically
dissipate via ambipolar diffusion. Eventually self-gravity
overcomes the magnetic force, inducing the collapse of
molecular cloud cores and the formation of stars (Mouschovias
et al. 2006). In contrast, “weak-field models” suggest that
turbulent flows, instead of magnetic fields, dominate the
evolution of molecular clouds and create overdense regions
where stars form (Mac Low & Klessen 2004). Recently, results
from simulations indicate that magnetic field and turbulence are
both essential to provide support against gravitational collapse
(Padoan et al. 2014, and references therein). Observational

studies of magnetic fields in star-forming regions can directly
test these theoretical models, providing deep insights into the
relative importance of magnetic fields and gravity/turbulence
in cloud evolution and star formation.
Observing the polarized emission of dust grains and the

polarization of background stars is one of the powerful ways to
investigate the plane-of-sky magnetic field structure in star-
forming regions (Hildebrand 1988b). The starlight polarization
was first discovered by Hiltner (1949) and Hall (1949). Later on,
the observed polarization of starlight was explained by the partial
extinction of starlight by magnetically aligned dust grains
(Hildebrand 1988a), where the short axes of spinning dust grains
align with magnetic field lines. This explanation is widely
accepted. There are many theories trying to explain why dust
grains are aligned with magnetic fields. Among them, the
Radiative Alignment Torque (RAT) theory is most accepted
(Lazarian 2007 Lazarian & Hoang 2007). Although the details of
the gain alignment mechanism are still unclear, the plane-of-sky
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magnetic field structure in star formation regions has been
successfully traced using polarization observations (Crutcher
2012). Polarization observations at near-infrared (NIR) wave-
lengths, which are expected to trace polarization produced by dust
extinction of background starlight, are often used to investigate the
magnetic field structure in dense molecular regions (Santos et al.
2014; Kwon et al. 2015). However, NIR polarization observations
are not sufficient to trace the magnetic field in regions with high
extinction or associated with few background stars. Polarization
observations at submillimeter wavelengths, which trace dust
thermal emission, are essential to overcome the drawback of NIR
polarization observations and to probe the magnetic field structure
in denser environments such as filaments and dense cores.

Among an increasing number of polarization observations
toward low-mass star formation regions, studies of the protostellar
phase of young stellar objects have attracted the most interest. One
important approach of these studies is to find hourglass-shaped
magnetic fields. As predicted by the theoretical model and
simulations (Galli & Shu 1993a, 1993b), the magnetic field of
magnetically dominated dense regions is expected to show an
hourglass shape in the collapse phase. At 0.001–0.01 pc scales,
dust polarization observations toward low-mass protostellar
systems have revealed the expected hourglass-shaped field
morphologies (Girart et al. 2006; Rao et al. 2009; Stephens
et al. 2013). More chaotic field morphologies, which are expected
in weakly magnetic environments or probably affected by stellar
feedback or complex geometry, are also reported at this scale
(Hull et al. 2014, 2017). At larger scales (0.01–0.1 pc), hints of the
hourglass shape are less obvious (Matthews et al. 2009; Dotson
et al. 2010; Hull et al. 2014), and the role of magnetic field at this
scale is comparatively less understood.

Since the magnetic field in protostellar cores can suffer from
feedback by star-forming activities, polarization studies of
starless cores are essential to help us understand the role of
magnetic fields in the early stages of star formation. The
relatively weak polarized dust emission in starless cores,
however, is far more difficult to detect, and as a result, there are
only a handful of dust polarization observations toward starless
cores (Ward-Thompson et al. 2000, 2009; Crutcher et al. 2004;
Alves et al. 2014). The role of magnetic fields in the initial
phase of star formation remains an open question.

The Ophiuchus molecular cloud is a low-mass star-forming
region located at a distance of ∼137 pc (Ortiz-León et al. 2017).
It is one of the nearest star formation regions and has been
widely studied (Wilking et al. 2008, and references therein). Star
formation in this cloud is heavily influenced by compression of
expanding shock shells from the nearby Sco-Cen OB association
(Vrba 1977). A detailed DCO+ emission study has identified
several dense cores, Ophiuchus A to Ophiuchus F (hereafter
Oph-A to Oph-F), in the main body of Ophiuchus (Loren et al.
1990). Among these dense cores, our target, Oph-C, which
harbors no embedded protostars (Enoch et al. 2009) and is not
associated with Herschel 70μm emission (Pattle et al. 2015),
appears to be the least evolved and is extremely quiescent. The
850 μm continuum of Oph-C was observed as part of the James
Clerk Maxwell telescope (JCMT) Gould Belt Survey (GBS;
Ward-Thompson et al. 2007; Pattle et al. 2015). Pattle et al.
(2015) identified a few low-mass, pressure-confined, virially
bound, and ∼0.01 pc scale (∼3000 au) subcores in Oph-C based
on the GBS data. The 850 μm polarization data of the Ophiuchus
cloud obtained using SCUPOL, the previous JCMT polarimeter,
were cataloged by Matthews et al. (2009). More recently, the

large-scale plane-of-sky magnetic field map of the Ophiuchus
cloud was presented by Planck Collaboration et al. (2015) at 5′
resolution as part of the Planck project. Kwon et al. (2015)
conducted NIR polarimetry of the Ophiuchus cloud and
suggested that the magnetic field structures in the cloud may
have been influenced by the nearby Sco-Cen OB association.
Here we present 850 μm dust polarization observations using

the POL-2 polarimeter in combination with the Submillimetre
Common-User Bolometer Array 2 (SCUBA-2) on the JCMT
toward the Oph-C region as part of the B-fields In STar-forming
Region Observations (BISTRO) survey (Ward-Thompson et al.
2017). The BISTRO survey is aimed at using POL-2 to map the
polarized dust emission in the densest parts of all of the Gould Belt
star-forming regions, including Orion A (Pattle et al. 2017), Oph-A
(Kwon et al. 2018), M16 (Pattle et al. 2018), Oph-B (Soam et al.
2018), and several other regions (papers in preparation). With
the unique resolution offered by JCMT, which can resolve the
magnetic field structures down to scales of∼1000 au in nearby star
formation regions, these POL-2 observations are crucial to test
theoretical models of star formation at an intermediate scale and to
generate a large sample of polarization maps of dense cores
obtained in a uniform and consistent way for statistical studies
(Ward-Thompson et al. 2017). The B-field structures traced by
POL-2 agree well with those traced by the previous SCUPOL
observations, but the POL-2 maps are more sensitive than the
previous SCUPOL data and trace larger areas (e.g., Kwon et al.
2018; Soam et al. 2018).
This paper is organized as follows: in Section 2, we describe

the observations and data reduction; in Section 3, we present
the results of the observations and derive the B-field strength; in
Section 4, we discuss our results; and in Section 5, we provide
a summary of this paper.

2. Observations

The polarized emission of Oph-C was observed at 850 μm
with SCUBA-2 (Holland et al. 2013) along with POL-2
(Friberg et al. 2016; P. B. Bastien et al. 2019, in preparation)
between 2016 May 22 and September 10. The region was
observed 20 times, among which 19 data sets had an average
integration time of 42 minutes and one bad data set was
excluded. The observations were made with the POL-2 DAISY
mode, which produces a map with high signal-to-noise ratio
(S/N) at a central region of 3′ radius and with increasing noise
to the edge. The effective beam size of JCMT is 14 1 (∼9 mpc
137 pc) at 850 μm.
The data were reduced using the SMURF (Jenness et al.

2013) package in Starlink (Currie et al. 2014). First, the calcqu
command is used to convert the raw bolometer time streams
into separate Stokes I, Q, and U time streams. Then, the
makemap routine in the pol2map script creates individual I
maps from the I time streams of each observation and co-adds
them to produce an initial reference I map. Second, the
pol2map is rerun with the initial I map to generate an
ASTMASK, which is used to define the S/N-based back-
ground regions that are set to zero until the last iteration, and a
PCAMASK, which defines the source regions that are excluded
when creating the background models within makemap. With
the ASTMASK and the PCAMASK, pol2map is again rerun
to reduce the previously created I time streams of each
observation, creating improved I maps. These individual
improved I maps are then co-added to produce a final improved
I map. Finally, with the same masks, pol2map creates the
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Q and U maps, along with their variance maps, and the
debiased polarization catalog, from the Q and U time streams.
The final improved I map is used for instrumental polarization
correction. The final I, Q, and U maps and the polarization
catalog are gridded to 7″ pixels for a Nyquist sampling.

The absolute calibration is performed by applying a flux
conversion factor (FCF) of 725 Jy beam−1 pW−1 to the output
I, Q, and U maps, converting the units of these maps from pW
to Jy beam−1. Due to the additional losses from POL-2, this
FCF is 1.35 times larger than the standard SCUBA-2 FCF of
537 Jy beam−1 pW−1 (Dempsey et al. 2013). The uncertainty
on the flux calibration is 5% (Dempsey et al. 2013). Figure 1
shows the Q, U, and I maps of our POL-2 data. The rms noises

of the background regions in the Q or U maps are ∼3.5 mJy
beam−1. From the corresponding variance maps, the average Q
or U variances are ∼2 mJy beam−1, reaching the target
sensitivity value for the BISTRO survey.
Figure 2 shows the total intensity map toward the same

region made with SCUBA-2 as part of the GBS project (Pattle
et al. 2015) and the difference between the SCUBA-2 I map
and the POL-2 I map. Because of the difference in the data
reduction procedures of the POL-2 data and the SCUBA-2 data
and the slower scanning speed of the POL-2 observation, the
large-scale structures seen in the SCUBA-2 I map are
suppressed in the POL-2 I map. Hence, the BISTRO I map is
much fainter than the GBS I map.

Figure 1. (a–c) POL-2 Stokes Q, U, and I maps of the Oph-C region, respectively. The intensity is shown in gray scale. The ASTMASK and the PCAMASK used in
the data reduction process are shown with dashed and solid lines, respectively.

4

The Astrophysical Journal, 877:43 (17pp), 2019 May 20 Liu et al.



Because of the uncertainties in the Q and U values and given
that the polarized intensity and polarized percentage are defined
as positive values, the measured polarized intensities are biased
toward larger values (Vaillancourt 2006). The debiased
polarized intensity and its corresponding uncertainty are
calculated as

Q U Q UPI 0.5 12 2 2 2d d= + - +( ) ( )

and
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where PI is the polarized intensity, δQ is the uncertainty of Q,
and δU is the uncertainty of U. The debiased polarization
percentage P and its uncertainty δP are therefore derived by
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where δI is the uncertainty of the total intensity.
Finally, the polarization position angle θ and its uncertainty

δθ (Naghizadeh-Khouei & Clarke 1993) are estimated to be
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3. Results

3.1. The Magnetic Field Morphology in the Oph-C Region

Assuming that the shortest axis of dust grains is perfectly
aligned with the magnetic field, we can derive the orientation of
the magnetic field projected on the plane of the sky by rotating
the observed polarization vectors by 90°. Figure 3 shows the B-
field segments of our POL-2 observations. These segments
have lengths proportional to the polarization degrees and
orientations along the local B-field. Note that our POL-2
segments are Nyquist sampled with a pixel size of 7″. With
these criteria, the vectors in the Oph-C region are well
separated from those in other dense regions of the Ophiuchus
cloud. The magnetic field orientations do not appear random
and have a predominant northeast–southwest orientation.
Figure 4 compares the magnetic field orientations from our

POL-2 data with previous observations with the older JCMT
polarimeter (SCUPOL; Matthews et al. 2009). We use criteria
of P/δP>2 and δP<4% for both the POL-2 data and the
SCUPOL data. Compared to the previous SCUPOL observa-
tions, our POL-2 observations show significant improvements
by detecting dust polarization over a much larger area and
toward the center of the core.
In Figure 5, histograms of the position angles of the B-field

segments from the POL-2 data and the SCUPOL data are
shown. The POL-2 histogram has a broad peak between ∼40°
and ∼100°. The standard deviation of the position angles of
these POL-2 vectors is ∼33°. The SCUPOL vectors are
randomly distributed, which is inconsistent with the POL-2
vectors.
To further compare the SCUPOL data and the POL-2 data,

we resampled the POL-2 data to the same pixel size as that of
the SCUPOL data (10″) and aligned the world coordinate
system of the two data sets. We found 31 pairs of spatially
overlapping vectors between the two data sets with vector
selection criteria of P/δP>2 and δP<4%. Figure 6 shows
the comparison of position angles (after 90° rotation) for these

Figure 2. (a) SCUBA-2 850 μm I map obtained from the GBS project. (b) Difference map obtained by subtracting the POL-2 I map from the SCUBA-2 I map. The
intensity is shown in gray scale. The masks are the same as those in Figure 1.
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overlapping vectors. Large angular differences in the position
angles of overlapping vectors can be seen in this figure. The
average angular difference of overlapping vectors is estimated
to be ∼39°. We further computed the Kolmogorov–Smirnov
(KS) statistic on the POL-2 and SCUPOL position angles and

found a probability of 0.06, which suggests the inconsistency in
position angles between the two samples. Such a difference,
along with the aforementioned inconsistency in histograms of
the position angles, can be explained by the lower S/N of the
SCUPOL data.

Figure 3. Magnetic field orientation maps. The total intensity of the 850 μm continuum from the GBS project is shown in gray scale. The total intensity is also shown
in contour levels, starting from 250 mJy beam−1 and continuing at steps of 80 mJy beam−1. Vectors are from the POL-2 data with δP<5%. The yellow and cyan
vectors correspond to data with P/δP>2 and P/δP>3, respectively. A reference 10% vector is shown in the lower right corner. A black dashed circle shows the
central region of 3′ radius.
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3.2. The Strength of the Magnetic Field

Davis (1951) and Chandrasekhar & Fermi (1953) proposed
that the strength of the B-field could be estimated by
interpreting the observed deviation of polarization angles from
the mean polarization angle orientation as Alfvén waves
induced by turbulent perturbations. This interpretation implies
that δB/B0∼σv/VA, where δB is the magnitude of a turbulent
component of the B-field, B0 is the strength of the large-scale
B-field, σv is the one-dimensional nonthermal velocity disper-
sion, and V B 4A 0 pr= is the Alfvén speed for a gas with a
mass density of ρ (see also Hildebrand et al. 2009). Such a
method (the Davis–Chandrasekhar–Fermi method, DCF

method hereafter), in its modified form, has been widely used
in estimating the plane-of-sky magnetic field strength Bpos from
a polarization map by implicitly assuming that δB/Bpos∼σθ,
where σθ is the measured dispersion of polarization angles
about a mean or modeled B-field.
Recently, progress has been made toward more accurately

quantifying δB/Bpos from a statistical analysis of polarization
angles. In this context, there are different methods based on the

Figure 4. Magnetic field orientation maps. The gray scales and contours are the same as those in Figure 3. The cyan and red vectors denote POL-2 data and SCUPOL
data, where P/δP>2 and δP<4%, respectively. A reference 10% vector is shown in the lower right.

Figure 5. Position angle (after 90° rotation) histogram for B-field vectors with
P/δP>2 and δP<4%. The bin size is 10°. The POL-2 vectors are shown in
black. The SCUPOL vectors are shown in red. Angles are measured east of
north.

Figure 6. Comparison of position angles (after 90° rotation) for overlapping
SCUPOL and POL-2 vectors with P/δP>2 and δP<4%. Data points
correspond to POL-2 data, with values of P/δP>3 marked in blue. Angles are
measured east of north.
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“structure function” (SF) of polarization angles (Hildebrand
et al. 2009) or the “autocorrelation function” (ACF) of
polarization angles (Houde et al. 2009). Yet another approach
is to measure the polarization dispersion with a method
analogous to “unsharp masking” (UM; Pattle et al. 2017). Here
we use these methods to estimate Bpos in Oph-C and compare
the results. For the analyses, we use our vector selection criteria
of P/δP>3 and δP<5%.

In the original version of DCF’s field model (Davis 1951;
Chandrasekhar & Fermi 1953), the effects of signal integration
along the line of sight and across the beam (hereafter beam-
integration effect) were not taken into account. Results from
theoretical and numerical works have shown that the beam-
integration effect can cause the angular dispersion in polariza-
tion maps to be underestimated, therefore overestimating the
magnetic field strength (Heitsch et al. 2001; Ostriker et al.
2001; Padoan et al. 2001; Falceta-Gonçalves et al. 2008; Houde
et al. 2009; Cho & Yoo 2016). To account for this effect, we
take a conventional correction factor (we use Qc to represent
this factor throughout this paper) value of 0.5 (Ostriker et al.
2001) to correct the measured angular dispersions and the
corresponding magnetic field strength in the SF and UM
analyses. The correction parameter Qc is further discussed in
Section 4.3.1.

Assuming the optically thin dust emission, a dust-to-gas ratio
Λ of 1:100 (Beckwith & Sargent 1991), and an opacity index β
of 2 (Hildebrand 1983), we calculate gas column density N(H2)
as follows:

N
I

m B T
H , 72

Hm k
= n

n n
( )

( )
( )

where Iν is the continuum intensity at frequency ν, μ=2.86 is
the mean molecular weight (Kirk et al. 2013; Pattle et al. 2015),
mH is the atomic mass of hydrogen, κν=0.1 (ν/1 THz)β is the
dust opacity (Hildebrand 1983) in cm2 g−1, and Bν(T) is the
Planck function at temperature T. In our analyses, we adopted a
dust temperature of 10±3 K (Stamatellos et al. 2007). The
uncertainty on the estimation of column density mainly comes
from the uncertainty of κν (Henning et al. 1995). Conserva-
tively, we adopt a fractional uncertainty of 50% (Roy et al.
2014; Pattle et al. 2017) for κν. In our calculations, we ignore
the uncertainties on Λ and μ. The column density was
estimated over the area with Stokes I>250 mJy beam−1 (see
Figure 3). The measured area A is 14,544 arcsec2 (0.0053 pc2).
Taking into account the uncertainties on κν, temperature, and
flux calibration, the fractional uncertainty on the estimated
column density is 59%. Therefore, the mean column density in
the concerned region is estimated to be (1.05± 0.62)×
1023 cm−2. Since the Oph-C core is highly “centrally con-
densed” (Motte et al. 1998), we adopt a spherical geometry and
a core volume (V ) of 4/3(A3/π)1/2. Again, we ignore the
uncertainty on the geometry assumption. The average volume
density nH2 is estimated to be (6.4± 3.7)×105 cm−3. The total
mass in our measured volume,M=μmHN(H2)A, is 12±7M☉.

To calculate the plane-of-sky magnetic field strength, we
need information about the velocity dispersion of the gas.
Assuming isotropic velocity perturbations, we adopt the line-
of-sight velocity dispersion estimated by André et al. (2007). In
their work, they carried out N2H

+ (1–0) observations toward
the Ophiuchus main cloud with a 26″ beam using the IRAM

30m telescope and found that the average line-of-sight
nonthermal velocity dispersion, σv, of the dense structures in
Oph-C is 0.13±0.02 km s−1. Their N2H

+ data are appropriate
to trace the velocity dispersion in Oph-C for many reasons. At
10 K, the critical density of N2H

+ (1–0) is 6.1×104 cm−3

(Shirley 2015), which is sufficient to probe the dense materials
in Oph-C. Also, the masses of dense structures in Oph-C traced
by the N2H

+ (1–0) data and the SCUBA-2 850 μm continuum
data are in good agreement (Pattle et al. 2015), and the N2H

+

(1–0) in Oph-C is optically thin (André et al. 2007), indicating
that the N2H

+ data and our SCUBA-2/POL-2 data generally
trace the same material. Although the beam size of the N2H

+

observation is nearly twice the beam size of our POL-2
observation, the spatial resolution of the N2H

+ observation,
26″, is still sufficient to resolve the Oph-C core that has a
diameter of ∼2′. Thus, it could be concluded that the average
line-of-sight nonthermal velocity dispersion of the dense
structures in Oph-C traced by N2H

+ (1–0) is well suited to
represent the average gas motions in our concerned region.

3.2.1. SF Analysis

In the SF method (Hildebrand et al. 2009), the magnetic field
is assumed to consist of a large-scale structured field, B0, and a
turbulent component, δB. The SF infers the behavior of
position angle dispersion as a function of vector separation l. At
some scale larger than the turbulent scale δ, δB should reach its
maximum value. At scales smaller than a scale d, the higher-
order terms of the Taylor expansion of B0 can be canceled out.
When δ<l=d, the angular dispersion function follows the
form

l b m l l . 8M
2

tot
2 2 2 2sáDF ñ + +( ) ( ) ( )

In this equation, l2
totáDF ñ( ) , the square of the total measured

dispersion function, consists of b2, a constant turbulent
contribution, m l2 2, the contribution from the large-scale
structured field, and lM

2s ( ), the contribution of the measure-
ment uncertainty. The ratio of the turbulent component and the
large-scale component of the magnetic field is given by
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Then, the estimated plane-of-sky magnetic field strength is
corrected by Qc:

B Q B . 11cpos 0= ( )

Figure 7 shows the angular dispersion corrected by
uncertainty ( l lM

2
tot

2sáDF ñ -( ) ( )) as a function of distance
measured from the polarization map. Following Hildebrand
et al. (2009), the data are divided into separate distance bins
with separations corresponding to the pixel size. At scales of
0″–25″, the angular dispersion function increases steeply with
the segment distance, most possibly due to the contribution of
the turbulent field. At scales larger than 25″, the function
continues increasing with a shallower slope, which we may
attribute to the large-scale ordered magnetic field structure, and
reaches its maximum at ∼100″. The maximum of the angular
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dispersion function is lower than the value expected for a
random field (52°; Poidevin et al. 2010). The angular
dispersion function presents wave-like “jitter” features at
l>25″. Soler et al. (2016) have attributed the jitter features
to the sparse sampling of the vectors in the observed region,
which means that the independent vectors involved in each
distance bin are not enough to achieve statistical significance.
We performed simple Monte Carlo simulations (see the
Appendix) and found that the uncertainty from sparse sampling
is ∼1°.5 in the SF for models with SFs similar to that of our
data in amounts of large-scale spatial correlation and random
angular dispersions. We fit the SF over 25″<l<100″.
During the fitting, the uncertainties both from the sparse
sampling and from simply propagating the measurement
uncertainties of the observed position angles have been taken
into account. The reduced chi-squared ( red

2c ) of the fitting is
1.2. The calculated values of parameters are given in Table 1
(without correction for the beam-integration effect) and Table 2
(with correction for the beam-integration effect).

3.2.2. ACF Analysis

The ACF method (Houde et al. 2009) expands the SF
method by including the effect of signal integration along the
line of sight and within the beam in the analysis. Houde et al.
(2009) write the angular dispersion function in the form

l
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where ΔΦ(l) is the difference in position angles of two vectors
separated by a distance l, W is the beam radius (6 0 for JCMT,
i.e., the FWHM beam divided by 8 ln 2 ), a2′ is the slope of
the second-order term of the Taylor expansion, and δ is the
turbulent correlation length mentioned before. N is the number
of turbulent cells probed by the telescope beam and is given by

N
W2

2
, 13

2 2

3

d
p d

=
+ D¢( ) ( )

where Δ′ is the effective thickness of the cloud. The ordered
magnetic field strength can be derived by
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Figure 8(a) shows the angular dispersion function of the
polarization segments in the Oph-C region. Figure 8(b)
shows the correlated component of the dispersion function.
The uncertainty from sparse sampling is ∼0.015 in the ACF
(see the Appendix). We fit the function at l<100″. Again, the
uncertainties both from the sparse sampling and from the
measurements have been taken into account. In our fitting, Δ′
is set to 20″, which is roughly the FWHM of the starless
subcore identified by Pattle et al. (2015). The red

2c of the fitting
is 1.1. The turbulent correlation length δ is found to be
7 0±2 7 (4.3± 1.6 mpc). The number of turbulent cells is
derived to be 2.5±0.5. The calculated values of other
parameters are given in Tables 1 and 2.

3.2.3. UM Analysis

In this section, we followed Crutcher et al. (2004) to derive
the plane-of-sky magnetic field strength with the expression

B Q m n4 . 15cpos H H
v

2pm
s
s

=
q

( )

The dispersion of the magnetic field angle, σθ, is measured
following the UM method developed by Pattle et al. (2017).
First, a 3×3 pixel boxcar average is applied to the measured
angles to show the local mean field orientation. With a 3×3
pixel boxcar, the effect of the curvature of the large-scale
ordered field on the smoothing is minimized. Then, the
deviation in field angle from the mean field orientation is
derived by subtracting the smoothed map from the observed
magnetic field map. Finally, the standard deviation of the
residual angles is measured to represent the angular dispersion
of the magnetic field angle.
We applied the UM method to our data and restricted the

analysis to pixels where the maximum angle difference within
the boxcar is <90°. Figure 9 shows the observed position
angles θobs, the position angles qá ñ of a mean B-field derived by
smoothing the observed position angles with a 3×3 pixel
boxcar filter, and the residual values obsq q- á ñ. We then
calculated the standard deviation of magnetic field angles (σθ)
as a cumulative function of the maximum permitted angle
uncertainty (δθmax) in the 3×3 pixel smoothing box (see
Figure 10). With Monte Carlo simulations, Pattle et al. (2017)
found that σθ can well represent the true angular dispersion
when δθmax is small, while σθ tend to increase with δθmax when
δθmax is large. In our case, we restrict our analysis to
12°<δθmax<47°, where σθ remains relatively constant
within this δθmax range. The average standard deviation is
measured to be 10°.7±0°.6 (see Figure 10). This value is
introduced in Equation (15) as σθ. The calculated values of
other parameters are given in Tables 1 and 2.

4. Discussion

4.1. Structure and Orientation of the Magnetic Field

Oph-C is unique in the Ophiuchus cloud, as it is fully a starless
core. Investigating the magnetic field structure in starless cores is

Figure 7. Left-hand axis: angular dispersion function for Oph-C. The angle
dispersion segments are shown with black filled circles with error bars. The
measurement uncertainties were removed. The best fit is shown by the blue
dashed line. Right-hand axis: number of independent vectors (green dashed
line) included in each data bin. The bin size is 7″.
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essential for us to explore the initial conditions of star formation.
Previous polarization observations toward cores in the starless
phase have shown relatively smooth and uniform magnetic field
structures (Ward-Thompson et al. 2000, 2009; Crutcher et al.
2004). Recently, Kandori et al. (2017) presented the first detection
of an hourglass-shaped magnetic field in a starless core with NIR
polarization observations toward FeSt 1457 (also known as Pipe-
109), suggesting that the magnetic field lines can be distorted by
mass condensation in the starless phase. However, the NIR
polarization observations cannot trace the densest materials in the
core, and the hourglass morphology was not found in
submillimeter polarization observations toward the same source
(Alves et al. 2014). Our observations toward Oph-C, which
present the most sensitive submillimeter polarization observation
in a low-mass starless core to date, reveal a relatively ordered B-
field with a prevailing northeast–southwest orientation (see
Figure 3). However, the B-field structure in Oph-C shows no
evidence of an hourglass morphology, which is consistent with
previous observations that an hourglass morphology is not
generally found in other cold dense cores from submillimeter
polarization observations at scales >0.01 pc. This suggests that
mass condensation does not significantly distort the local B-field
structure at scales>0.01 pc in the densest materials of dense cores
at both the starless phase and prestellar phase.

The role of magnetic fields in dense cores may vary with the
evolution of the core. As part of the BISTRO survey (Ward-
Thompson et al. 2017), polarization observations toward two
protostellar cores with similar masses (Motte et al. 1998) to that
of Oph-C in the Ophiuchus cloud, Oph-A and Oph-B, have
been made and are ready to be compared with our data. Our
observations of Oph-C show that the overall magnetic field
geometry in Oph-C is ordered, and the polarization position
angles show large angular dispersions. This behavior is similar
to that in Oph-B, which is a relatively quiescent core in
Ophiuchus but is more evolved than Oph-C, while the B-field
in Oph-A, which is the warmest and the only core with
substantially gravitationally bound subcores found in Ophiu-
chus, is mostly well organized and with small angular
dispersions (Enoch et al. 2009; Pattle et al. 2015; Kwon
et al. 2018; Soam et al. 2018). In addition, the angular
dispersions in Oph-C (∼11°–22°) and Oph-B (∼15°) are larger
than those in Oph-A (∼2°–6°). These indicate that the star
formation process may reduce angular dispersions in the
magnetic field in the late stages of star formation.

Our observations reveal that there is a prevailing orientation
in the B-field in Oph-C centering at ∼40°–100° (see Figure 5).
This orientation agrees with the B-field orientations in Oph-A,
where the B-field components center at ∼40°–100° (Kwon
et al. 2018), and Oph-B, where the position angle of B-field
peaks at ∼50°–80° (Soam et al. 2018). The B-field position
angle distribution in Oph-C is consistent with the ∼50° B-field
component in lower-density regions of the Ophiuchus cloud
traced by the NIR polarization map of Kwon et al. (2015),
and it is also aligned with the cloud-scale B-field orientation

probed by Planck (see Figure3 in Planck Collaboration et al.
2016). The consistency of B-field orientation from cloud
to core scales indicates that the large-scale magnetic field
plays a dominant role in the formation of dense cores in the
Ophiuchus cloud.

4.2. Depolarization Effect

A clear trend of decreasing polarization percentage with
increasing dust emission intensity is seen in Figure 3. Such an
effect is more evident in Figure 11(a), in which the P–I relation
suggests depolarization toward high density. Considering that the
overall field does not change orientation while threading the core,
the depolarization in Oph-C seems unlikely to be a by-product of
field tangling of complex small-scale field lines within the JCMT
beam. In addition, the subsonic nonthermal gas motions of Oph-C
indicate that the polarization percentage has not been significantly
affected by the number of turbulent cells along the line of sight.
The RAT mechanism (Lazarian 2007), which suggests inefficient
grain alignment toward high-density regions, also cannot fully
explain the depolarization effect because of the lack of an internal
or external radiation field in the Oph-C region. Alternatively, grain
characteristics such as size, shape, and composition, which are
related to grain alignment mechanism, may explain the depolar-
ization effect. The turbulent structure of the magnetic field, which
can induce the field tangling and therefore reduce P, also provides
a plausible explanation to the decreasing of the polarization
percentage toward higher intensities (Planck Collaboration et al.
2015, 2018).
We fitted the P–I relation with a power-law slope and found

that the slope index is −1.03±0.05, which indicates that the
polarized intensity is almost constant in Oph-C. The nearly
constant polarized intensity is more clearly shown in
Figure 11(b). The slope index for Oph-C is slightly lower
than the index of −0.92±0.05 for the entire Ophiuchus cloud
(Planck Collaboration et al. 2015). For other dense cores in
Ophiuchus, a slope index of −0.7 to −0.8 was found in Oph-A
(Kwon et al. 2018), and an index of around −0.9 was found in
Oph-B (Soam et al. 2018). Considering that Oph-A is the
warmest and most evolved among the Oph cores, Oph-B is
more quiescent than Oph-A, and Oph-C is the most quiescent
region in Ophiuchus (Pattle et al. 2015), it appears that the
power-law slope of the P–I relation is shallower in more
evolved dense cores in the Ophiuchus cloud. This trend could
be explained by the improved alignment efficiency resulting
from the additional internal radiation (predicted by the RAT
theory; Lazarian 2007) in more evolved regions. Alternatively, if
the depolarization is caused by turbulence (Planck Collaboration
et al. 2015, 2018), the stronger turbulence in more evolved dense
cores (André et al. 2007) may also be a possible reason for
the variation in the slope index. More detailed analysis of the
depolarization effect in the Ophiuchus cloud will be presented in
a separate publication by the BISTRO team.

Table 1
Parameters Derived from Different Modified DCF Methods without Correction for Beam Integration

Parameter Description SF ACF UM

Δθ (deg) Angular dispersion 22±1 21±8 11±1
B B2

0
2dá ñ á ñ Turbulent-to-ordered magnetic field energy ratio 0.15±0.01 0.13±0.10 0.035±0.004

Bpos (μG) Plane-of-sky magnetic field strength 206±68 223±113 426±141
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4.3. Magnetic Field Strength

4.3.1. Comparison of Three Modified DCF Methods

While the morphologies of magnetic fields can help us to
qualitatively understand its role in the star formation process,
the magnetic field strength is important in quantitatively
assessing the significance of the magnetic field compared to

gravity based on the mass-to-flux ratio, and compared to
turbulence based on the ratio of random to ordered components
in polarization angle statistics. The strengths of magnetic fields,
however, cannot be measured directly from polarization
observations. In this paper, we estimated the average magnetic
field strength in Oph-C from different modified DCF methods.
Results of these methods are shown in Tables 1 and 2. From the
statistical analyses of the dispersion of dust polarization angles,
the beam-integrated angular dispersions derived from the SF
and ACF methods are consistent with each other (∼21°–22°)
and are larger than that derived from the UM method (∼11°),
indicating that the magnetic field strength estimated from the
UM method could be systematically larger than that derived
from the SF method and the ACF method. Similar behavior
was found when applying these methods on the polarization
map of OMC-1 (Hildebrand et al. 2009; Houde et al. 2009;
Pattle et al. 2017), a region that has a relatively stronger
magnetic field (the Bpos is ∼13.2 mG estimated from the UM
method and ∼3.5–3.8 mG estimated from the SF/ACF method
without correction for beam integration) than that in Oph-C.
The estimated Bpos in Oph-C (∼0.1–0.2 mG) is lower than that
in Oph-A (∼0.2–5 mG) and Oph-B (∼0.6 mG).
Because the results of the dispersion function analysis could

be affected by the bin size (Koch et al. 2010), we have redone
the SF and ACF analyses to find the dependence on the bin
size. We found that oversampling (with bin size <7″) would
inject additional noises into the dispersion functions (both SF
and ACF), thus leading to overestimation of the angular
dispersion and underestimation of the B-field strength. The
origin of the additional noise is possibly related to the wrongly
generated masks, due to small pixel size in the POL-2 data
reduction process, and needs to be further investigated.
Increasing the bin size, on the other hand, shows little effect
on the SF method and leads to larger values of turbulent scale
and B-field strength for the results of the ACF method. We also
found that, by undersampling, the turbulent scale estimated
from the ACF method is always approximately equal to the bin
size. The effects on the ACF method can be simply explained
by a loss of information on small scales due to undersampling.
Koch et al. (2010) have also investigated the dependence of the
SF method on the bin size but got different results from ours:
oversampling shows little effect on the SF, while under-
sampling biases the analysis toward larger dispersion values.
This indicates that the dependence of dispersion function on
the bin size is not simple. Considering these factors and that the
derived turbulent scale (∼7 0) is approximately equal to
the Nyquist sampling interval of our data, we note that the
turbulent scale along with the B-field strength derived from
the ACF method could be overestimated.
Increasing the box size for smoothing would significantly

overestimate the angular dispersion derived from the UM
method because of field curvature, while in a zero-curvature

Table 2
Parameters Derived from Different Modified DCF Methods with Correction for Beam Integration

Parameter Description SF ACF UM

Δθ (deg) Angular dispersion 45±14 34±13 21±7
B B2

0
2dá ñ á ñ Turbulent-to-ordered magnetic field energy ratio 0.61±0.37 0.35±0.27 0.14±0.09

Bpos (μG) Plane-of-sky magnetic field strength 103±46 136±69 213±115
λ Observed magnetic stability critical parameter 7.8±5.7 5.9±4.6 3.8±3.0
λc Corrected magnetic stability critical parameter 2.6±1.9 1.9±1.5 1.3±1.0
EB (1035 J) Total magnetic energy 5.4±4.8 9.5±9.7 23.2±25.0

Figure 8. (a) Angular dispersion function for Oph-C. The angle dispersion
segments are shown with black filled circles with error bars. The bin size is
the same as that in Figure 7. A blue dashed line shows the fitted dispersion
function. The cyan dashed line shows the large-scale component N B1 2dá ñ( )(
B a l0

2
2

2á ñ + ¢) of the best fit. (b) Correlated component of the dispersion function.
The correlated component N B B e1 l W2

0
2 2 22 2 2dá ñ á ñ d- +( ) ) ( ) is shown with a blue

dashed line. The cyan dashed line shows the correlated component solely due to
the beam.
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case decreasing the box size would slightly underestimate the
angular dispersion (Pattle et al. 2017). Since the B-field in Oph-
C does not show well-defined shapes, it is unclear whether the
angular dispersion in Oph-C is underestimated or over-
estimated by the UM method. We checked the dependence
on the box size in our UM analysis by reapplying the UM
method to our data with a 5×5 pixel smoothing box and a
7×7 pixel smoothing box and derived angular dispersions of
∼11°–12°, indicating that a larger smoothing box would not
significantly change the results of our UM analysis.

Systematic uncertainties of the DCF method may arise from the
beam-integration effect. For the UM method and the SF method,
we use a correction factor Qc to account for the averaging effect of
turbulent cells along the line of sight. Ostriker et al. (2001) found
that Qc is in the range of 0.46–0.51 for angular dispersions less
than 25°. In our case, the Gaussian fitting of the position angles of
polarization segments in Oph-C gives a standard deviation of angle
of 33°, which is larger than the angular dispersion limit of Ostriker
et al. (2001). However, this standard deviation includes the
contribution from the curvature of the large-scale field. Excluding

Figure 9. Left panel: observed magnetic field angles θobs. Middle panel: smoothed magnetic field angles qá ñ. Right panel: residual angles obsq q- á ñ. The vectors are of
uniform length. The angles are measured south of east so that the color bars of the observed, smoothed, and residual angles are unified.

Figure 10. Left-hand axis: σθ as a cumulative function of δθmax, shown by the
black solid line. Right-hand axis: number of vectors (green dashed line)
included in the cumulative function. The average standard deviation is
measured over the region between two black dashed lines.

Figure 11. (a) Polarization degree vs. total intensity. (b) Polarized intensity vs.
total intensity. Data points with P/δP>3 and δP<5% are shown with error
bars. The result of the power-law fitting of the P–I relation is shown by the
dashed line.
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the angular variations of the large-scale field, we got standard
deviations <25° from the modified DCF methods. Hence, we
adopted a conventional Qc value of 0.5. The uncertainty of the Qc

value is ∼30% (Crutcher et al. 2004). On the other hand, the ACF
method takes into account the beam-integration effect by directly
fitting the angular dispersion function. The number of turbulent
cells of ∼2.5 derived from the ACF method is equivalent to a Qc

of ∼0.63, which is slightly larger than the correlation factor
adopted by the SF analysis and the UM analysis.

As mentioned by Crutcher (2012), even applying the most
complicated modified DCF method on the highest-quality data
would lead to a Bpos value with an uncertainty varying by a
factor of two or more, for various reasons. It is essential to
assess the accuracy of these methods by comparing the results
of these methods on polarization maps from simulations.
Although the magnetic field strengths estimated from the three
modified DCF methods may have systematic differences, they
are consistent with each other within the uncertainties,
indicating that these results are robust to some extent, and
that we can still compare the relative importance of magnetic
field with gravity and turbulence with these results.

4.3.2. Magnetic Field versus Gravity

To find out whether or not the magnetic field can support
Oph-C against gravity, we compared the ratio of mass to
magnetic flux with the critical ratio using the local magnetic
stability critical parameter λ (Crutcher et al. 2004):
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The observed critical parameters derived from the SF, ACF,
and UM methods are 7.8±5.7, 5.9±4.6, and 3.8±3.0 (see
Table 2), respectively. Crutcher et al. (2004) proposed that the
observed M/f along with λ are overestimated because of
geometrical effects. Crutcher et al. (1993) found an average
line-of-sight B-field strength (Blos) of 6.8±2.5 μG in the
Ophiuchus cloud based on OH Zeeman observations with an
18′ beam. Their estimated Blos is much smaller than the Bpos

inferred by our analyses, indicating that the B-field in Oph-C is
possibly lying near the plane of the sky. However, since quasi-
thermal OH emissions cannot trace high-density materials with
n(H2) > 104 cm−3 and the beam of the OH Zeeman observation
is much larger than that of our polarization maps, it is more
likely that the line-of-sight B-field strength in the Oph-C is
underestimated by Crutcher et al. (1993). As the degree of the
underestimation of Blos is unknown, the correction factor for
the geometrical bias cannot be derived by simply comparing
Blos and Bpos. Alternatively, we adopted a statistical correction

factor of 3 (Crutcher et al. 2004). By applying this correction,
we obtain corrected critical parameters (λc) of 2.6±1.9,
1.9±1.5, and 1.3±1.0 (see Table 2) for the SF, ACF, and
UM methods, respectively. These values indicate that the Oph-
C region is near magnetically critical or slightly magnetically
supercritical (i.e., unstable to collapse).

4.3.3. Magnetic Field versus Turbulence

To compare the relative importance of the magnetic field and
turbulence in Oph-C, we calculated the magnetic field energy
and the internal nonthermal kinetic energy. The total magnetic
field energy is given by

E
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in SI units, where μ0 is the permeability of vacuum and
B B4

pos=
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(Crutcher et al. 2004) is the total magnetic field
strength. The internal nonthermal kinetic energy is derived by
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For the estimated volume (see Section 3.2) of Oph-C, the
internal nonthermal kinetic energy is (6.1± 2.0)×1035 J. The
total magnetic field energy measured from the SF, ACF, and
UM methods is (5.4± 4.8)×1035 J, (9.5± 9.7)×1035 J, and
(2.3± 2.5)×1036 J (see Table 2), respectively. The EB

calculated from the SF method is comparable to EK,NT, while
the values of EB estimated from the ACF and UM methods are
greater than EK,NT. However, the uncertainty is more than
100% for the values of EB calculated from the ACF and UM
methods. Thus, we can only set upper limits for the total
magnetic field energy in Oph-C from these two methods.

5. Summary

As part of the BISTRO survey, we have presented the
850 μm polarization observations toward the Oph-C region
with the POL-2 instrument at the JCMT. The main conclusions
of this work are as follows:

1. Our POL-2 observations are much more sensitive and trace
a larger area than previous SCUPOL observations. Unlike
the randomly distributed magnetic field orientations traced
by the SCUPOL observations, the magnetic field traced by
our POL-2 observations shows an ordered field geometry
with a predominant orientation of northeast–southwest. We
found the average angular difference of spatially over-
lapping vectors between the two data sets to be ∼39°. We
performed a K-S test on the position angles and found that
the POL-2 data and the SCUPOL data have low probability
(0.06) to be drawn from the same distribution. The
inconsistency between the POL-2 and the SCUPOL data
may be explained by the low S/N of the SCUPOL data.

2. The B-field orientation in Oph-C is consistent with the B-
field orientations in Oph-A and Oph-B. The orientation
also agrees with the B-field component in lower-density
regions traced by NIR observations and is aligned with
the cloud-scale B-field orientation revealed by Planck.

3. We detect a decreasing polarization percentage as a
function of increasing total intensity in the Oph-C region.
The power-law slope index is found to be −1.03±0.05,
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suggesting that the polarized intensity is almost constant
in Oph-C.

4. We compare the plane-of-sky magnetic field strength in
Oph-C calculated from different modified DCF methods.
The Bpos calculated by the SF method, the ACF method,
and the UM method are 103±46 μG, 136±69 μG, and
213±115 μG, respectively.

5. The ratio of mass to magnetic flux of Oph-C is found to
be comparable to or slightly higher than its critical value,
suggesting that the Oph-C region is near magnetically
critical or magnetically supercritical (i.e., unstable to
collapse).

6. In Oph-C, the total magnetic energy calculated from the
SF method is comparable to the turbulent energy. Due to
large uncertainties, the ACF method and the UM method
only set upper limits for the total magnetic energy.

7. We compared our work with studies of two other dense
cores in the Ophiuchus cloud. We find that the B-fields in
Oph-C and Oph-B have larger angular dispersions than
Oph-A. We also find a possible trend of shallower P–I
relationship with evolution in the three dense cores in the
Ophiuchus region. In addition, the Bpos in Oph-C is lower
than Bpos of more evolved regions (e.g., Oph-A and Oph-
B) in Ophiuchus.
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Appendix
Uncertainty from Sparse Sampling

Here we derive the uncertainty in the dispersion function
caused by the lack of vector samples (sparse sampling). We
perform simple Monte Carlo simulations of modeled structured
fields with randomly generated Gaussian dispersions to roughly
estimate the uncertainty of sparse sampling in the dispersion
function of our data. It should be noted that because simulating
the beam-integration effect is extremely time-consuming and
only affects the first two or three data points of the dispersion
function, the beam-integration effect is not taken into account
in our toy models.
We start with generating the underlying field model. We note

that since the uncertainty in the angular dispersion function due
to sparse sampling is only related to the amount of spatial
correlation of field orientations across the sky and the amount
of angular dispersion relative to the structured field (Soler et al.
2016), the choice of the underlying field model is arbitrary. We
build a set of underlying parabola models (e.g., Girart et al.
2006; Rao et al. 2009; Qiu et al. 2014) with the form

y g gCx , 222= + ( )

where x is the offsets in pixels along the field axis from the center
of symmetry. In Figures 12(a) and (b), a parabola field model with
C=0.13 is shown in magenta curves as an example.
We then derive the orientation of the modeled sparsely

sampled B-vectors by applying a Gaussian angular dispersion
of 22° (to match the angular dispersion of ∼21°–22° derived
from the SF and ACF methods) to the underlying B-vectors
with the same spatial distributions as those of the observed B-
vectors in Oph-C with P/δP>3 and δP<5%, while the
offsets and angle of the modeled B-vectors with respect to the
center of symmetry of the underlying modeled field are
random. An example of the modeled sparsely sampled B-
vectors is shown in Figure 12(a).
In a similar way, we also derived the orientation of

“unbiased” samples of B-vectors with a Gaussian angular
dispersion of 22° and spatial separation of 1 pixel (7″) for
comparison. There are enough vectors in the “unbiased”
sample to achieve statistical significance. An example of the
modeled “unbiased” B-vectors is shown in Figure 12(b).
We calculate the SF and ACF (see Figures 12(c) and (d) for

examples of the SF and ACF) from the sparse samples and
“unbiased” samples of modeled vectors and find that the
average deviations of the SFs and ACFs between the two sets
of samples are ∼1°.5 and ∼0.015 over 25″<l<100″,
relatively for SFs and ACFs with similar amounts of large-
scale spatial correlation and random angular dispersions (e.g.,
similar SF and ACF shapes over 25″< l< 100″) to the
dispersion functions calculated from the observed data. These
average deviations, which are larger than the statistical
uncertainties (∼0°.6 for the SF and ∼0.007 for the ACF over
25″< l< 100″ in average) propagated from the measurement
uncertainty, are introduced in our analyses as the uncertainties
due to sparse sampling.
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Figure 12. (a)Modeled sparsely sampled B-vectors with an angular dispersion of 22° are shown in cyan. (b)Modeled “unbiased” B-vectors with an angular dispersion
of 22° are shown in blue. In panels (a) and (b), magenta curves denote the underlying parabola field models with C=0.13. Vectors are of unit length. The triangle
marks the region in which we calculated the “unbiased” dispersion function. (c) SFs calculated from samples corresponding to all modeled vectors in the triangle
region (blue), modeled Oph-C vectors (cyan), and observed Oph-C vectors (red). (d) ACF, with the same symbols as those in panel (c).
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