703 research outputs found
Hydrodynamic induced deformation and orientation of a microscopic elastic filament
We describe simulations of a microscopic elastic filament immersed in a fluid
and subject to a uniform external force. Our method accounts for the
hydrodynamic coupling between the flow generated by the filament and the
friction force it experiences. While models that neglect this coupling predict
a drift in a straight configuration, our findings are very different. Notably,
a force with a component perpendicular to the filament axis induces bending and
perpendicular alignment. Moreover, with increasing force we observe four shape
regimes, ranging from slight distortion to a state of tumbling motion that
lacks a steady state. We also identify the appearance of marginally stable
structures. Both the instability of these shapes and the observed alignment can
be explained by the combined action of induced bending and non-local
hydrodynamic interactions. Most of these effects should be experimentally
relevant for stiff micro-filaments, such as microtubules.Comment: three figures. To appear in Phys Rev Let
Feedback topology and XOR-dynamics in Boolean networks with varying input structure
We analyse a model of fixed in-degree Random Boolean Networks in which the
fraction of input-receiving nodes is controlled by a parameter gamma. We
investigate analytically and numerically the dynamics of graphs under a
parallel XOR updating scheme. This scheme is interesting because it is
accessible analytically and its phenomenology is at the same time under
control, and as rich as the one of general Boolean networks. Biologically, it
is justified on abstract grounds by the fact that all existing interactions
play a dynamical role. We give analytical formulas for the dynamics on general
graphs, showing that with a XOR-type evolution rule, dynamic features are
direct consequences of the topological feedback structure, in analogy with the
role of relevant components in Kauffman networks. Considering graphs with fixed
in-degree, we characterize analytically and numerically the feedback regions
using graph decimation algorithms (Leaf Removal). With varying gamma, this
graph ensemble shows a phase transition that separates a tree-like graph region
from one in which feedback components emerge. Networks near the transition
point have feedback components made of disjoint loops, in which each node has
exactly one incoming and one outgoing link. Using this fact we provide
analytical estimates of the maximum period starting from topological
considerations
Mean-field methods in evolutionary duplication-innovation-loss models for the genome-level repertoire of protein domains
We present a combined mean-field and simulation approach to different models
describing the dynamics of classes formed by elements that can appear,
disappear or copy themselves. These models, related to a paradigm
duplication-innovation model known as Chinese Restaurant Process, are devised
to reproduce the scaling behavior observed in the genome-wide repertoire of
protein domains of all known species. In view of these data, we discuss the
qualitative and quantitative differences of the alternative model formulations,
focusing in particular on the roles of element loss and of the specificity of
empirical domain classes.Comment: 10 Figures, 2 Table
Micro-beam and pulsed laser beam techniques for the micro-fabrication of diamond surface and bulk structures
Micro-fabrication in diamond is involved in a wide set of emerging
technologies, exploiting the exceptional characteristics of diamond for
application in bio-physics, photonics, radiation detection. Micro ion-beam
irradiation and pulsed laser irradiation are complementary techniques, which
permit the implementation of complex geometries, by modification and
functionalization of surface and/or bulk material, modifying the optical,
electrical and mechanical characteristics of the material. In this article we
summarize the work done in Florence (Italy) concerning ion beam and pulsed
laser beam micro-fabrication in diamond.Comment: 14 pages, 5 figure
Seismic performance of historical buildings based on discrete element method: an adobe church
This article presents the main concepts and the application of the discrete element method (DEM) for evaluating the seismic performance of historical buildings. Furthermore, the out-of-plane behavior of an adobe church with thick walls, in which the morphology of the cross-section can have an influence on the response, was evaluated by the DEM. The performance of rigid and deformable blocks models was compared, and the sensitivity of the numerical model to the variation of critical parameters was investigated. The results allowed the identification of the most vulnerable elements and a proposal of recommendations for reducing the seismic vulnerability
Recommended from our members
Global climate change and tree nutrition: effects of elevated CO2 and temperature
Although tree nutrition has not been the primary
focus of large climate change experiments on trees, we are beginning to understand its links to elevated atmospheric CO2 and temperature changes. This review focuses on the major nutrients, namely N and P, and deals with the effects of climate change on the processes that alter their cycling and availability. Current knowledge regarding biotic and abiotic agents of weathering, mobilization and immobilization of these elements will be discussed. To date, controlled environment studies have identified possible effects of climate change on tree nutrition. Only some of these findings, however, were verified in ecosystem scale experiments. Moreover, to be able to predict future effects of climate change on tree nutrition at this scale, we need to progress from studying effects of single factors
to analysing interactions between factors such as elevated
CO2, temperature or water availability
Hydrodynamic Synchronisation of Model Microswimmers
We define a model microswimmer with a variable cycle time, thus allowing the
possibility of phase locking driven by hydrodynamic interactions between
swimmers. We find that, for extensile or contractile swimmers, phase locking
does occur, with the relative phase of the two swimmers being, in general,
close to 0 or pi, depending on their relative position and orientation. We show
that, as expected on grounds of symmetry, self T-dual swimmers, which are
time-reversal covariant, do not phase-lock. We also discuss the phase behaviour
of a line of tethered swimmers, or pumps. These show oscillations in their
relative phases reminiscent of the metachronal waves of cilia.Comment: 17 pages, 8 figure
- …