1,082 research outputs found

    IRIS: A new generation of IRAS maps

    Full text link
    The Infrared Astronomical Satellite (IRAS) had a tremendous impact on many areas of modern astrophysics. In particular it revealed the ubiquity of infrared cirrus that are a spectacular manifestation of the interstellar medium complexity but also an important foreground for observational cosmology. With the forthcoming Planck satellite there is a need for all-sky complementary data sets with arcminute resolution that can bring informations on specific foreground emissions that contaminate the Cosmic Microwave Background radiation. With its 4 arcmin resolution matching perfectly the high-frequency bands of Planck, IRAS is a natural data set to study the variations of dust properties at all scales. But the latest version of the images delivered by the IRAS team (the ISSA plates) suffer from calibration, zero level and striping problems that can preclude its use, especially at 12 and 25 micron. In this paper we present how we proceeded to solve each of these problems and enhance significantly the general quality of the ISSA plates in the four bands (12, 25, 60 and 100 micron). This new generation of IRAS images, called IRIS, benefits from a better zodiacal light subtraction, from a calibration and zero level compatible with DIRBE, and from a better destriping. At 100 micron the IRIS product is also a significant improvement from the Schlegel et al. (1998) maps. IRIS keeps the full ISSA resolution, it includes well calibrated point sources and the diffuse emission calibration at scales smaller than 1 degree was corrected for the variation of the IRAS detector responsivity with scale and brightness. The uncertainty on the IRIS calibration and zero level are dominated by the uncertainty on the DIRBE calibration and on the accuracy of the zodiacal light model.Comment: 16 pages, 17 figures, accepted for publication in ApJ (Suppl). Higher resolution version available at http://www.cita.utoronto.ca/~mamd/IRIS/IrisTechnical.htm

    Break in the VHE spectrum of PG 1553+113: new upper limit on its redshift?

    Get PDF
    PG 1553+113 is a known BL Lac object, newly detected in the GeV-TeV energy range by H.E.S.S and MAGIC. The redshift of this source is unknown and a lower limit of z>0.09z > 0.09 was recently estimated. The very high energy (VHE) spectrum of PG 1553+113 is attenuated due to the absorption by the low energy photon field of the extragalactic background light (EBL). Here we correct the combined H.E.S.S and MAGIC spectrum of PG 1553+113 for this absorption assuming a minimum density of the evolving EBL. We use an argument that the intrinsic photon index cannot be harder than Γ=1.5\Gamma = 1.5 and derive an upper limit on the redshift of z<0.69z < 0.69. Moreover, we find that a redshift above z=0.42z = 0.42 implies a possible break of the intrinsic spectrum at about 200 GeV. Assuming that such a break is absent, we derive a much stronger upper limit of z<0.42z < 0.42. Alternatively, this break might be attributed to an additional emission component in the jet of PG 1553+113. This would be the first evidence for a second component is detected in the VHE spectrum of a blazar.Comment: revised version submitted to Ap

    The Near Infrared Background: Interplanetary Dust or Primordial Stars?

    Full text link
    The intensity of the diffuse ~ 1 - 4 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval (Arendt & Dwek 2003, Matsumoto et al. 2005). The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from HII regions formed by the first generation of very massive stars. In this paper we analyze the implications of this spectral component for the formation rate of these Population III stars, the redshift interval during which they formed, the reionization of the universe and evolution of collapsed halo masses. We find that to reproduce the intensity and spectral shape of the NIRBL requires a peak star formation rate that is higher by about a factor of 4 to 10 compared to those derived from hierarchical models. Furthermore, an extragalactic origin for the NIRBL leads to physically unrealistic absorption-corrected spectra of distant TeV blazars. All these results suggest that Pop III stars contribute only a fraction of the NIRBL intensity with zodiacal light, star forming galaxies, and/or non-nuclear sources giving rise to the remaining fraction.Comment: 28 pages including 7 embedded figures. Submitted to Ap

    Cosmic Background dipole measurements with Planck-High Frequency Instrument

    Get PDF
    This paper discusses the Cosmic Background (CB) dipoles observations in the framework of the Planck mission. Dipoles observations can be used in three ways: (i) It gives a measurement of the peculiar velocity of our Galaxy which is an important observation in large scale structures formation model. (ii) Measuring the dipole can give unprecedent information on the monopole (that can be in some cases hard to obtain due to large foreground contaminations). (iii) The dipole can be an ideal absolute calibrator, easily detectable in cosmological experiments. Following the last two objectives, the main goal of the work presented here is twofold. First, we study the accuracy of the Planck-HFI calibration using the Cosmic Microwave Background (CMB) dipole measured by COBE as well as the Earth orbital motion dipole. We show that we can reach for HFI, a relative calibration between rings of about 1% and an absolute calibration better than 0.4% for the CMB channels (in the end, the absolute calibration will be limited by the uncertainties on the CMB temperature). We also show that Planck will be able to measure the CMB dipole direction at better than 1.7 arcmin and improve on the amplitude. Second, we investigate the detection of the Cosmic Far-Infrared Background (FIRB) dipole. Measuring this dipole could give a new and independent determination of the FIRB for which a direct determination is quite difficult due to Galactic dust emission contamination. We show that such a detection would require a Galactic dust emission removal at better than 1%, which will be very hard to achieve.Comment: 10 pages, 13 figures, submitted to A&A, uses aa.sty V5.

    The Spitzer Space Telescope First-Look Survey: Neutral Hydrogen Emission

    Full text link
    The Spitzer Space Telescope (formerly SIRTF) extragalactic First-Look Survey covered about 5 square degrees centered on J2000 17:18 +59:30 in order to characterize the infrared sky with high sensitivity. We used the 100-m Green Bank Telescope to image the 21cm Galactic HI emission over a 3x3 degree field covering this position with an effective angular resolution of 9.8 arcmin and a velocity resolution of 0.62 km/s. In the central square degree of the image the average column density is N(HI) = 2.5 x 10^{20} cm-2 with an rms fluctuation of 0.3 x 10^{20}. The Galactic HI in this region has a very interesting structure. There is a high-velocity cloud, several intermediate-velocity clouds (one of which is probably part of the Draco nebula), and narrow-line low velocity filaments. The HI emission shows a strong and detailed correlation with dust. Except for the high-velocity cloud, all features in the HI map have counterparts in an E(B-V) map derived from infrared data. Relatively high E(B-V)/N(HI) ratios in some directions suggest the presence of molecular gas. The best diagnostic of such regions is the peak HI line brightness temperature, not the total N(HI): directions where Tb > 12 K have E(B-V)/N(HI) significantly above the average value. The data corrected for stray radiation have been released via the Web.Comment: Accepted for publication in the Astronomical Journal, April 2005. 25 pages includes 11 figures. The data and higher resolution figures are available from http::/www.cv.nrao.edu/fls_gb

    Determination of the Far-Infrared Cosmic Background Using COBE/DIRBE and WHAM Data

    Full text link
    Determination of the cosmic infrared background (CIB) at far infrared wavelengths using COBE/DIRBE data is limited by the accuracy to which foreground interplanetary and Galactic dust emission can be modeled and subtracted. Previous determinations of the far infrared CIB (e.g., Hauser et al. 1998) were based on the detection of residual isotropic emission in skymaps from which the emission from interplanetary dust and the neutral interstellar medium were removed. In this paper we use the Wisconsin H-alpha Mapper (WHAM) Northern Sky Survey as a tracer of the ionized medium to examine the effect of this foreground component on determination of the CIB. We decompose the DIRBE far infrared data for five high Galactic latitude regions into H I and H-alpha correlated components and a residual component. We find the H-alpha correlated component to be consistent with zero for each region, and we find that addition of an H-alpha correlated component in modeling the foreground emission has negligible effect on derived CIB results. Our CIB detections and 2 sigma upper limits are essentially the same as those derived by Hauser et al. and are given by nu I_nu (nW m-2 sr-1) < 75, < 32, 25 +- 8, and 13 +- 3 at 60, 100, 140, and 240 microns, respectively. Our residuals have not been subjected to a detailed anisotropy test, so our CIB results do not supersede those of Hauser et al. We derive upper limits on the 100 micron emissivity of the ionized medium that are typically about 40% of the 100 micron emissivity of the neutral atomic medium. This low value may be caused in part by a lower dust-to-gas mass ratio in the ionized medium than in the neutral medium, and in part by a shortcoming of using H-alpha intensity as a tracer of far infrared emission.Comment: 38 pages, 8 figures. Accepted for publication in Ap

    The impact of main belt asteroids on infrared--submillimetre photometry and source counts

    Get PDF
    > Among the components of the infrared and submillimetre sky background, the closest layer is the thermal emission of dust particles and minor bodies in the Solar System. This contribution is especially important for current and future infrared and submillimetre space instruments --like those of Spitzer, Akari and Herschel -- and must be characterised by a reliable statistical model. > We describe the impact of the thermal emission of main belt asteroids on the 5...1000um photometry and source counts, for the current and future spaceborne and ground-based instruments, in general, as well as for specific dates and sky positions. > We used the statistical asteroid model (SAM) to calculate the positions of main belt asteroids down to a size of 1km, and calculated their infrared and submillimetre brightness using the standard thermal model. Fluctuation powers, confusion noise values and number counts were derived from the fluxes of individual asteroids. > We have constructed a large database of infrared and submillimetre fluxes for SAM asteroids with a temporal resolution of 5 days, covering the time span January 1, 2000 -- December 31, 2012. Asteroid fluctuation powers and number counts derived from this database can be obtained for a specific observation setup via our public web-interface. > Current space instruments working in the mid-infrared regime (Akari and Spitzer Space Telescopes) are affected by asteroid confusion noise in some specific areas of the sky, while the photometry of space infrared and submillimetre instruments in the near future (e.g. Herschel and Planck Space Observatories) will not be affected by asteroids. Faint main belt asteroids might also be responsible for most of the zodiacal emission fluctuations near the ecliptic.Comment: accepted for publication in Astronomy & Astrophysics; Additional material (appendices) and the related web-interface can be found at: "http://kisag.konkoly.hu/solarsystem/irsam.html

    The contribution of Quasars to the Far Infrared Background

    Get PDF
    Recent observational results obtained with SCUBA, COBE and ISO have greatly improved our knowledge of the infrared and sub-mm background radiation. These limits become constraining given the realization that most AGNs are heavily obscured and must reradiate strongly in the IR/sub-mm. Here we predict the contribution of AGNs to the IR/sub-mm background, starting from measurements of the hard X-ray background. We show that an application of what we know of AGN Spectral Energy Distributions (SEDs) and the IR background requires that a significant fraction of the 10-150 micron background comes from AGNs. This conclusion can only be avoided if obscured AGNs are intrinsically brighter in the X-rays (with respect to the optical-UV) than unobscured AGNs, contrary to ``unified schemes'' for AGNs, or have a dust to gas ratio much lower (< 0.1) than Galactic. We show that these results are rather robust and not strongly dependent on the details of the modeling.Comment: 13 pages, 1 figure, Astrophysical Journal, in pres

    Extrapolation of Galactic Dust Emission at 100 Microns to CMBR Frequencies Using FIRAS

    Full text link
    We present predicted full-sky maps of submillimeter and microwave emission from the diffuse interstellar dust in the Galaxy. These maps are extrapolated from the 100 micron emission and 100/240 micron flux ratio maps that Schlegel, Finkbeiner, & Davis (1998; SFD98) generated from IRAS and COBE/DIRBE data. Results are presented for a number of physically plausible emissivity models. We find that no power law emissivity function fits the FIRAS data from 200 - 2100 GHz. In this paper we provide a formalism for a multi-component model for the dust emission. A two-component model with a mixture of silicate and carbon-dominated grains (motivated by Pollack et al., 1994}) provides a fit to an accuracy of about 15% to all the FIRAS data over the entire high-latitude sky. Small systematic differences are found between the atomic and molecular phases of the ISM. Our predictions for the thermal (vibrational) emission from Galactic dust at \nu < 3000 GHz are available for general use. These full-sky predictions can be made at the DIRBE resolution of 40' or at the higher resolution of 6.1 arcmin from the SFD98 DIRBE-corrected IRAS maps.Comment: 48 pages, AAS LaTeX, 6 figures, ApJ (accepted). Data described in the text, as well as 4 additional figures, are available at http://astro.berkeley.edu/dus

    An Empirical Decomposition of Near-IR Emission into Galactic and Extragalactic Components

    Get PDF
    We decompose the COBE/DIRBE observations of the near-IR sky brightness (minus zodiacal light) into Galactic stellar and interstellar medium (ISM) components and an extragalactic background. This empirical procedure allows us to estimate the 4.9 micron cosmic infrared background (CIB) as a function of the CIB intensity at shorter wavelengths. A weak indication of a rising CIB intensity at wavelengths > 3.5 micron hints at interesting astrophysics in the CIB spectrum, or warns that the foreground zodiacal emission may be incompletely subtracted. Subtraction of only the stellar component from the zodiacal-light-subtracted all-sky map reveals the clearest 3.5 micron ISM emission map, which is found to be tightly correlated with the ISM emission at far-IR wavelengths.Comment: 10 pages. 10 JPEG and PNG figures. Uses emulateapj5.sty. To appear in 2003, ApJ, 585, 000 (March 1, 2003
    • 

    corecore