41 research outputs found

    Fennec dust forecast intercomparison over the Sahara in June 2011

    Get PDF
    International audienceIn the framework of the Fennec international programme , a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynam-ics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing con-vection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the AĂŻr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only

    AMMA information system: an efficient cross-disciplinary tool and a legacy for forthcoming projects

    Get PDF
    International audienceIn the framework of the African Monsoon Multidisciplinary Analyses (AMMA) programme, several tools have been developed in order to facilitate and speed up data and information exchange between researchers from different disciplines. The AMMA information system includes a multidisciplinary user-friendly distributed data management and distribution system, a reports and quick looks archive associated with a display website and scientific papers exchange systems. All the applications have been developed by several French institutions and fully duplicated in Niamey, Niger

    Inter-model comparison of sub-seasonal tropical variability in aquaplanet experimets: effect of a warm pool

    Get PDF
    This study compares the simulation of sub-seasonal tropical variability by a set of six state-of-the-art AGCMs in two experiments in aqua-planet configuration: a zonally-symmetric experiment, and an experiment with a warm pool centered on the equator. In all six models, the presence of the warm pool generates zonal asymmetries in the simulated mean states in the form of a “Gill-type” response, made more complex by feedbacks between moisture, convective heating and circulation. Noticeable differences appear from one model to another. Only half the models simulate mean low-level equatorial westerlies over the warm pool area. The presence of the warm pool can also favor the development of large-scale variability consistent with observed Madden-Julian Oscillation (MJO) characteristics, but this happens only in half the models. Our results do not support the idea that the presence of the warm pool and/or of mean low-level equatorial westerlies are sufficient conditions for MJO-like variability to arise in the models. Comparing spectral characteristics of the simulated Convectively Coupled Equatorial Waves (CCEWs) in the aquaplanet experiments and the corresponding coupled atmosphere-ocean (i.e. CMIP) and atmosphere-only (i.e. AMIP) simulations, we also show that there is more consistency for a given model across its configurations, than for a given configuration across the six models. Overall, our results confirm that the simulation of sub-seasonal variability by given model is significantly influenced by the parameterization of sub-grid physical processes (most-likely cloud processes), both directly and through modulation of the mean state

    A density current parameterization coupled with Emanuel's convection scheme. Part I: The models

    No full text
    International audienceThe aim of the present series of papers is to develop a density current parameterization for global circulation models. This first paper is devoted to the presentation of this new wake parameterization coupled with Emanuel's convective scheme. The model represents a population of identical circular cold pools (the wakes) with vertical frontiers. The wakes are cooled by the precipitating downdrafts while the outside area is warmed by the subsidence induced by the saturated drafts. The budget equations for mass, energy, and water yield evolution equations for the prognostic variables (the vertical profiles of the temperature and humidity differences between the wakes and their exterior). They also provide additional terms for the equations of the mean variables. The driving terms of the wake equations are the differential heating and drying due to convective drafts. The action of the convection on the wakes is implemented by splitting the convective tendency and attributing the effect of the precipitating downdrafts to the wake region and the effect of the saturated drafts to their exterior. Conversely, the action of the wakes on convection is implemented by introducing two new variables representing the convergence at the leading edge of the wakes. The available lifting energy (ALE) determines the triggers of deep convection: convection occurs when ALE exceeds the convective inhibition. The available lifting power (ALP) determines the intensity of convection; it is equal to the power input into the system by the collapse of the wakes. The ALE/ALP closure, together with the splitting of the convective heating and drying, implements the full coupling between wake and convection. The coupled wake-convection scheme thus created makes it possible to represent the moist convective processes more realistically, to prepare the coupling of convection with boundary layer and orographic processes, and to consider simulating the propagation of convective systems. © 2010 American Meteorological Society

    Reply to “Comments on ‘A Density Current Parameterization Coupled with Emanuel’s Convection Scheme. Part I: The Models’”

    No full text
    International audienceIn the original paper of this discussion, Grandpeix and Lafore (2010, hereafter GL10) presented a density current parameterization coupled with Emanuel’s convection scheme. Jun-Ichi Yano’s comment (Yano 2012, hereafter Yc12) questions various formulas of this parameterization and proposes new ones following an approach based on segmentally constant approximation (SCA; Yano et al. 2010). Essentially, Yc12 ascertains an overall agreement between the new formulas and the GL10 ones, the proposed modifications amounting to the introduction of new terms representing various processes neglected in GL10. Yet Yc12 claims that it was a mistake not to use SCA for the wake equationderivation. Although we acknowledge the interest of the new developments presented by Yc12, we think that the very existence of two different ways of developing wake models should be considered as very positive. Let us emphasize, however, that most of the equations put forward by Yc12 have never been published and appear for the first time in this comment: what we are dealing with here is not really a comment but rather a note about new developments of SCA. Our reply to Yc12 is structured in two parts: 1) a first part devoted to a global analysis of Yc12 and of its relevance for the wake model of GL10, and 2) a second part (hereafter referred to as the appendix) that contains detailed item-by-item responses to Yano’s remarks. In what follows, we shall keep the equation numbering proposed in Yc12: all of the equations numbered without a prefix are those from GL10, unless otherwisenoted. The equations in Yc12’s main text and appendix are numbered with prefixes 2 and A, respectively

    A density current parameterization coupled with Emanuel's convection scheme. Part II: 1D simulations

    No full text
    International audienceThe density current parameterization coupled with Emanuel's convection scheme, described in Part I of this series of papers, is tested in a single-column framework for continental and maritime convective systems. The case definitions and reference simulations are provided by cloud-resolving models (CRMs). For both cases, the wake scheme yields cold pools with temperature and humidity differences relative to the environment in reasonable agreement with observations (with wake depth on the order of 2 km over land and 1 km over ocean). The coupling with the convection scheme yields convective heating, drying, and precipitation similar to those simulated by the CRM. Thus, the representation of the action of the wakes on convection in terms of available lifting energy (ALE) and available lifting power (ALP) appears satisfactory. The sensitivity of the wake-convection system to the basic parameters of the parameterization is widely explored. A range of values for each parameter is recommended to help with implementing the scheme in a full-fledged general circulation model. © 2010 American Meteorological Society
    corecore