13 research outputs found

    CD4+ T cell surface alpha enolase is lower in older adults

    Get PDF
    To identify novel cell ageing markers in order to gain insight into ageing mechanisms, we adopted membrane enrichment and comparison of the CD4+ T cell membrane proteome (purified by cell surface labelling using Sulfo-NHS-SS-Biotin reagent) between healthy young (n=9, 20-25y) and older (n=10; 50-70y) male adults. Following two-dimensional gel electrophoresis (2DE) to separate pooled membrane proteins in triplicates, the identity of protein spots with age-dependent differences (p1.4 fold difference) was determined using liquid chromatography-mass spectrometry (LC-MS/MS). Seventeen protein spot density differences (ten increased and seven decreased in the older adult group) were observed between young and older adults. From spot intensity analysis, CD4+ T cell surface α-enolase was decreased in expression by 1.5 fold in the older age group; this was verified by flow cytometry (n=22) and qPCR with significantly lower expression of cellular α-enolase mRNA and protein compared to young adult CD4+ T cells (p<0.05). In an independent age-matched case-control study, lower CD4+ T cell surface α-enolase expression was observed in age-matched patients with cardiovascular disease (p<0.05). An immune-modulatory role has been proposed for surface α-enolase and our findings of decreased expression suggest that deficits in surface α-enolase merit investigation in the context of immune dysfunction during ageing and vascular disease

    Neural Predictors of Gait Stability When Walking Freely in the Real-World.

    Get PDF
    Background: Gait impairments during real-world locomotion are common in neurological diseases. However, very little is currently known about the neural correlates of walking in the real world and on which regions of the brain are involved in regulating gait stability and performance. As a first step to understanding how neural control of gait may be impaired in neurological conditions such as Parkinson’s disease, we investigated how regional brain activation might predict walking performance in the urban environment and whilst engaging with secondary tasks in healthy subjects. Methods: We recorded gait characteristics including trunk acceleration and brain activation in fourteen healthy young subjects whilst they walked around the university campus freely (single task), while conversing with the experimenter and while texting with their smartphone. Neural spectral power density (PSD) was evaluated in three brain regions of interest, namely the pre-frontal cortex (PFC) and bilateral posterior parietal cortex (right/left PPC). We hypothesized that specific regional neural activation would predict trunk acceleration data obtained during the different walking conditions. Results: Vertical trunk acceleration was predicted by gait velocity and left PPC theta (4-7 Hz) band PSD in single-task walking (R-squared = 0.725, p = 0.001) and by gait velocity and left PPC alpha (8-12 Hz) band PSD in walking while conversing (R-squared = 0.727, p = 0.001). Medio-lateral trunk acceleration was predicted by left PPC beta (15-25 Hz) band PSD when walking while texting (R-squared = 0.434, p = 0.010). Conclusions: We suggest that the left PPC may be involved in the processes of sensorimotor integration and gait control during walking in real-world conditions. Frequency-specific coding was operative in different dual tasks and may be developed as biomarkers of gait deficits in neurological conditions during performance of these types of, now commonly undertaken, dual tasks

    UV scattering by pores in avian eggshells

    No full text

    Proteome modification induced by differential inhibition of MsrA and MsrB in HEK293 cells

    No full text
    11th International Symposium on the Neurobiology and Neuroendocrinology of Aging, Bregenz, AUSTRIA, JUL 29-AUG 03, 2012International audienceno abstrac

    Reference Genes for High-Throughput Quantitative Reverse Transcription-PCR Analysis of Gene Expression in Organs and Tissues of Eucalyptus Grown in Various Environmental Conditions

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Interest in the genomics of Eucalyptus has skyrocketed thanks to the recent sequencing of the genome of Eucalyptus grandis and to a growing number of large-scale transcriptomic studies. Quantitative reverse transcription-PCR (RT-PCR) is the method of choice for gene expression analysis and can now also be used as a high-throughput method. The selection of appropriate internal controls is becoming of utmost importance to ensure accurate expression results in Eucalyptus. To this end, we selected 21 candidate reference genes and used high-throughput microfluidic dynamic arrays to assess their expression among a large panel of developmental and environmental conditions with a special focus on wood-forming tissues. We analyzed the expression stability of these genes by using three distinct statistical algorithms (geNorm, NormFinder and delta Ct), and used principal component analysis to compare methods and rankings. We showed that the most stable genes identified depended not only on the panel of biological samples considered but also on the statistical method used. We then developed a comprehensive integration of the rankings generated by the three methods and identified the optimal reference genes for 17 distinct experimental sets covering 13 organs and tissues, as well as various developmental and environmental conditions. The expression patterns of Eucalyptus master genes EgMYB1 and EgMYB2 experimentally validated our selection. Our findings provide an important resource for the selection of appropriate reference genes for accurate and reliable normalization of gene expression data in the organs and tissues of Eucalyptus trees grown in a range of conditions including abiotic stresses.531221012116Agence Nationale pour la Recherche (ANR) [ANR-2010-KBBE-007-01]Centre National pour la Recherche Scientifique (CNRS)University Paul Sabatier Toulouse III (UPS)Fundacao para a Ciencia e Tecnologia (FCT) [P-KBBE/AGR_GPL/0001/2010, PTDC/AGR-GPL/098179/2008, PEst-OE/EQB/LA0004/2011]INTEREG IVB SudoE project InterbioLaboratoire d'Excellence (LABEX) project entitled TULIP [ANR-10-LABX-41]China Scholarship CouncilFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FCT [SFRH/BD/72982/2010]Departament d'Universitats, Recerca i Societat de la Informacio de la Generalitat de CatalunyaFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Agence Nationale pour la Recherche (ANR) [ANR-2010-KBBE-007-01]Fundacao para a Ciencia e Tecnologia (FCT) [P-KBBE/AGR_GPL/0001/2010, PTDC/AGR-GPL/098179/2008, PEst-OE/EQB/LA0004/2011]Laboratoire d'Excellence (LABEX) project entitled TULIP [ANR-10-LABX-41]FAPESP [FAPESP]FCT [SFRH/BD/72982/2010
    corecore