55 research outputs found

    Specific association between the methyl-CpG-binding domain protein 2 and the hypermethylated region of the human telomerase reverse transcriptase promoter in cancer cells.

    Get PDF
    Human telomerase reverse transcriptase (hTERT) is expressed in most cancer cells. Paradoxically, its promoter is embedded in a hypermethylated CpG island. A short region escapes to this alteration, allowing a basal level of transcription. However, the methylation of adjacent regions may play a role in the maintenance of low hTERT expression. It is now well established that methyl-CpG binding domain proteins mediate the transcriptional silencing of hypermethylated genes. The potential involvement of these proteins in the control of hTERT expression was firstly investigated in HeLa cells. Chromatin immunoprecipitation assays showed that only methyl-CpG-binding domain protein 2 (MBD2) associated the hypermethylated hTERT promoter. In MBD2 knockdown HeLa cells, constitutively depleted in MBD2, neither methyl CpG binding protein 2 (MeCP2) nor MBD1 acted as substitutes for MBD2. MBD2 depletion by transient or constitutive RNA interference led to an upregulation of hTERT transcription that can be downregulated by expressing mouse Mbd2 protein. Our results indicate that MBD2 is specifically and directly involved in the transcriptional repression of hTERT in HeLa cells. This specific transcriptional repression was also observed in breast, liver and neuroblastoma cancer cell lines. Thus, MBD2 seems to be a general repressor of hTERT in hTERT-methylated telomerase-positive cells

    Stress-induced c-Fos expression is differentially modulated by dexamethasone, diazepam and imipramine

    Get PDF
    Immobilization stress upregulates c-Fos expression in several CNS areas. Repeated stress or the use of drugs can modulate stress-induced c-Fos expression. Here, we investigated in 40 different areas of the rat brain the effects of dexamethasone (SDX, a synthetic glucocorticoid), diazepam (SBDZ, a benzodiazepine), and imipramine (IMI, an antidepressant) on the c-Fos expression induced by restraint stress. Wistar rats were divided into four groups and submitted to 20 days of daily injection of saline (three first groups) or imipramine, 15 mg/kg, i.p. On day 21, animals were submitted to injections of saline (somatosensory, SS), SDX (1 mg/kg, i.p.), SBDZ (5 mg/kg, i.p.), or IMI (15 mg/kg, i.p.) before being submitted to restraint. Immediately after stress, the animals were perfused and their brains processed with immunohistochemistry for c-Fos (Ab-5 Oncogene Science). Dexamethasone reduced stress- induced c-Fos expression in SS cortex, hippocampus, paraventricular nucleus of the hypothalamus (PVH), and locus coeruleus (LC), whereas diazepam reduced c-Fos staining in the SS cortex, hippocampus, bed nucleus of stria terminalis, septal area, and hypothalamus (preoptic area and supramammillary nucleus). Chronic administration of imipramine decreased staining in the hippocampus, PVH, and LC, while increasing it in the nucleus raphe pallidus. We conclude that dexamethasone, diazepam and imipramine differentially modulate stress-induced Fos expression. the present study provides an important comparative background that may help in the further understanding of the effects of these compounds and on the brain activation as well as on the behavioral, neuroendocrine, and autonomic responses to stress.UFRRJ, Dept Physiol Sci, BR-23890000 Rio de Janeiro, BrazilUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Psychobiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Psychobiol, São Paulo, BrazilWeb of Scienc

    Long-Term Exposure of Early-Transformed Human Mammary Cells to Low Doses of Benzo[a]pyrene and/or Bisphenol A Enhances Their Cancerous Phenotype via an AhR/GPR30 Interplay

    Get PDF
    It is of utmost importance to decipher the role of chronic exposure to low doses of environmental carcinogens on breast cancer progression. The early-transformed triple-negative human mammary MCF10AT1 cells were chronically (60 days) exposed to low doses (10−10 M) of Benzo[a]pyrene (B[a]P), a genotoxic agent, and/or Bisphenol A (BPA), an endocrine disruptor. Our study revealed that exposed MCF10AT1 cells developed, in a time-dependent manner, an acquired phenotype characterized by an increase in cancerous properties (anchorage independent growth and stem-like phenotype). Co-exposure of MCF10AT1 cells to B[a]P and BPA led to a significantly greater aggressive phenotype compared to B[a]P or BPA alone. This study provided new insights into the existence of a functional interplay between the aryl hydrocarbon receptor (AhR) and the G protein-coupled receptor 30 (GPR30) by which chronic and low-dose exposure of B[a]P and/or BPA fosters the progression of MCF10AT1 cells into a more aggressive substage. Experiments using AhR or GPR30 antagonists, siRNA strategies, and RNAseq analysis led us to propose a model in which AhR signaling plays a “driver role” in the AhR/GPR30 cross-talk in mediating long-term and low-dose exposure of B[a]P and/or BPA. Retrospective analysis of two independent breast cancer cohorts revealed that the AhR/GPR30 mRNA expression signature resulted in poor breast cancer prognosis, in particular in the ER-negative and the triple-negative subtypes. Finally, the study identified targeting AhR and/or GPR30 with specific antagonists as a strategy capable of inhibiting carcinogenesis associated with chronic exposure to low doses of B[a]P and BPA in MCF10AT1 cells. Altogether, our results indicate that the engagement of both AhR and GPR30 functions, in particular in an ER-negative/triple-negative context of breast cells, favors tumor progression and leads to poor prognosis. © Copyright © 2020 Donini, El Helou, Wierinckx, Győrffy, Aires, Escande, Croze, Clezardin, Lachuer, Diab-Assaf, Ghayad, Fervers, Cavaillès, Maguer-Satta and Cohen

    Behavioral and Autonomic Responses to Acute Restraint Stress Are Segregated within the Lateral Septal Area of Rats

    Get PDF
    Background: The Lateral Septal Area (LSA) is involved with autonomic and behavior responses associated to stress. In rats, acute restraint (RS) is an unavoidable stress situation that causes autonomic (body temperature, mean arterial pressure (MAP) and heart rate (HR) increases) and behavioral (increased anxiety-like behavior) changes in rats. The LSA is one of several brain regions that have been involved in stress responses. The aim of the present study was to investigate if the neurotransmission blockade in the LSA would interfere in the autonomic and behavioral changes induced by RS. Methodology/Principal Findings: Male Wistar rats with bilateral cannulae aimed at the LSA, an intra-abdominal datalogger (for recording internal body temperature), and an implanted catheter into the femoral artery (for recording and cardiovascular parameters) were used. They received bilateral microinjections of the non-selective synapse blocker cobalt chloride (CoCl2, 1 mM / 100 nL) or vehicle 10 min before RS session. The tail temperature was measured by an infrared thermal imager during the session. Twenty-four h after the RS session the rats were tested in the elevated plus maze (EPM). Conclusions/Significance: Inhibition of LSA neurotransmission reduced the MAP and HR increases observed during RS. However, no changes were observed in the decrease in skin temperature and increase in internal body temperature observed during this period. Also, LSA inhibition did not change the anxiogenic effect induced by RS observed 24 h later in the EPM. The present results suggest that LSA neurotransmission is involved in the cardiovascular but not the temperatur

    EMT Inducers Catalyze Malignant Transformation of Mammary Epithelial Cells and Drive Tumorigenesis towards Claudin-Low Tumors in Transgenic Mice

    Get PDF
    The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT–inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell–like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation

    Tailored HIV-1 Vectors for Genetic Modification of Primary Human Dendritic Cells and Monocytes

    No full text
    Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications
    corecore