329 research outputs found

    Phase transition in the Countdown problem

    Get PDF
    Here we present a combinatorial decision problem, inspired by the celebrated quiz show called the countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We then derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.Comment: Submitted for publicatio

    Time series irreversibility: a visibility graph approach

    Get PDF
    We propose a method to measure real-valued time series irreversibility which combines two differ- ent tools: the horizontal visibility algorithm and the Kullback-Leibler divergence. This method maps a time series to a directed network according to a geometric criterion. The degree of irreversibility of the series is then estimated by the Kullback-Leibler divergence (i.e. the distinguishability) between the in and out degree distributions of the associated graph. The method is computationally effi- cient, does not require any ad hoc symbolization process, and naturally takes into account multiple scales. We find that the method correctly distinguishes between reversible and irreversible station- ary time series, including analytical and numerical studies of its performance for: (i) reversible stochastic processes (uncorrelated and Gaussian linearly correlated), (ii) irreversible stochastic pro- cesses (a discrete flashing ratchet in an asymmetric potential), (iii) reversible (conservative) and irreversible (dissipative) chaotic maps, and (iv) dissipative chaotic maps in the presence of noise. Two alternative graph functionals, the degree and the degree-degree distributions, can be used as the Kullback-Leibler divergence argument. The former is simpler and more intuitive and can be used as a benchmark, but in the case of an irreversible process with null net current, the degree-degree distribution has to be considered to identifiy the irreversible nature of the series.Comment: submitted for publicatio

    The shape of memory in temporal networks

    Full text link
    Temporal networks are widely used models for describing the architecture of complex systems. Network memory -- that is the dependence of a temporal network's structure on its past -- has been shown to play a prominent role in diffusion, epidemics and other processes occurring over the network, and even to alter its community structure. Recent works have proposed to estimate the length of memory in a temporal network by using high-order Markov models. Here we show that network memory is inherently multidimensional and cannot be meaningfully reduced to a single scalar quantity. Accordingly, we introduce a mathematical framework for defining and efficiently estimating the microscopic shape of memory, which fully characterises how the activity of each link intertwines with the activities of all other links. We validate our methodology on a wide range of synthetic models of temporal networks with tuneable memory, and subsequently study the heterogeneous shapes of memory emerging in various real-world networks.Comment: 35 pages (5 main, 30 supplementary), 14 figures (3 main, 11 supplementary), 3 tables (all supplementary), uses tikz-network.sty and tikz_network.p

    On the biological role of Fraunhofer lines of the Sun

    Get PDF
    The important role of Fraunhofer lines formed in the solar atmosphere in the spectrum of the Sun for the biological evolution on Earth has been discussed. In vitro, laboratory experiments have been accomplished to substantiate the concept of the role of Fraunhofer lines as drivers of the evolution via impact on molecules of biological significance. As a practical application of the concept, successful results of clinical tests on humans have been obtained to demonstrate the possibility of non-medicinal means to be used for therapy in the cases of infectious deceases such as HIV/AIDS. The importance for human health of blurring Fraunhofer lines due to increasing atmospheric pollution has been emphasized

    Phase transition in a stochastic prime number generator

    Full text link
    We introduce a stochastic algorithm that acts as a prime number generator. The dynamics of such algorithm gives rise to a continuous phase transition which separates a phase where the algorithm is able to reduce a whole set of integers into primes and a phase where the system reaches a frozen state with low prime density. We present both numerical simulations and an analytical approach in terms of an annealed approximation, by means of which the data are collapsed. A critical slowing down phenomenon is also outlined.Comment: accepted in PRE (Rapid Comm.

    Predicting success in the worldwide start-up network

    Get PDF
    By drawing on large-scale online data we construct and analyze the time-varying worldwide network of professional relationships among start-ups. The nodes of this network represent companies, while the links model the flow of employees and the associated transfer of know-how across companies. We use network centrality measures to assess, at an early stage, the likelihood of the long-term positive performance of a start-up, showing that the start-up network has predictive power and provides valuable recommendations doubling the current state of the art performance of venture funds. Our network-based approach not only offers an effective alternative to the labour-intensive screening processes of venture capital firms, but can also enable entrepreneurs and policy-makers to conduct a more objective assessment of the long-term potentials of innovation ecosystems and to target interventions accordingly

    Number theoretic example of scale-free topology inducing self-organized criticality

    Full text link
    In this work we present a general mechanism by which simple dynamics running on networks become self-organized critical for scale free topologies. We illustrate this mechanism with a simple arithmetic model of division between integers, the division model. This is the simplest self-organized critical model advanced so far, and in this sense it may help to elucidate the mechanism of self-organization to criticality. Its simplicity allows analytical tractability, characterizing several scaling relations. Furthermore, its mathematical nature brings about interesting connections between statistical physics and number theoretical concepts. We show how this model can be understood as a self-organized stochastic process embedded on a network, where the onset of criticality is induced by the topology.Comment: 4 pages, 3 figures. Physical Review Letters, in pres

    Critical behavior of a Ginzburg-Landau model with additive quenched noise

    Get PDF
    We address a mean-field zero-temperature Ginzburg-Landau, or \phi^4, model subjected to quenched additive noise, which has been used recently as a framework for analyzing collective effects induced by diversity. We first make use of a self-consistent theory to calculate the phase diagram of the system, predicting the onset of an order-disorder critical transition at a critical value {\sigma}c of the quenched noise intensity \sigma, with critical exponents that follow Landau theory of thermal phase transitions. We subsequently perform a numerical integration of the system's dynamical variables in order to compare the analytical results (valid in the thermodynamic limit and associated to the ground state of the global Lyapunov potential) with the stationary state of the (finite size) system. In the region of the parameter space where metastability is absent (and therefore the stationary state coincide with the ground state of the Lyapunov potential), a finite-size scaling analysis of the order parameter fluctuations suggests that the magnetic susceptibility diverges quadratically in the vicinity of the transition, what constitutes a violation of the fluctuation-dissipation relation. We derive an effective Hamiltonian and accordingly argue that its functional form does not allow to straightforwardly relate the order parameter fluctuations to the linear response of the system, at odds with equilibrium theory. In the region of the parameter space where the system is susceptible to have a large number of metastable states (and therefore the stationary state does not necessarily correspond to the ground state of the global Lyapunov potential), we numerically find a phase diagram that strongly depends on the initial conditions of the dynamical variables.Comment: 8 figure

    Impact of survey geometry and super-sample covariance on future photometric galaxy surveys

    Get PDF
    Photometric galaxy surveys probe the late-time Universe where the density field is highly non-Gaussian. A consequence is the emergence of the super-sample covariance (SSC), a non-Gaussian covariance term that is sensitive to fluctuations on scales larger than the survey window. In this work, we study the impact of the survey geometry on the SSC and, subsequently, on cosmological parameter inference. We devise a fast SSC approximation that accounts for the survey geometry and compare its performance to the common approximation of rescaling the results by the fraction of the sky covered by the survey, fSKY, dubbed ‘full-sky approximation’. To gauge the impact of our new SSC recipe, that we call ‘partial-sky’, we perform Fisher forecasts on the parameters of the (w0, wa)-CDM model in a 3 × 2 point analysis, varying the survey area, the geometry of the mask, and the galaxy distribution inside our redshift bins. The differences in the marginalised forecast errors –with the full-sky approximation performing poorly for small survey areas but excellently for stage-IV-like areas– are found to be absorbed by the marginalisation on galaxy bias nuisance parameters. For large survey areas, the unmarginalised errors are underestimated by about 10% for all probes considered. This is a hint that, even for stage-IV-like surveys, the partial-sky method introduced in this work will be necessary if tight priors are applied on these nuisance parameters. We make the partial-sky method public with a new release of the public code PySSC
    • …
    corecore