45 research outputs found

    Automated assessment of echocardiographic image quality using deep convolutional neural networks

    Get PDF
    Myocardial ischemia tops the list of causes of death around the globe, but its diagnosis and early detection thrives on clinical echocardiography. Although echocardiography presents a huge advantage of a non-intrusive, low-cost point of care diagnosis, its image quality is inherently subjective with strong dependence on operators’ experience level and acquisition skill. In some countries, echo specialists are mandated to supplementary years of training to achieve ‘gold standard’ free-hand acquisition skill without which exacerbates the reliability of echocardiogram and increases possibility for misdiagnosis. These drawbacks pose significant challenges to adopting echocardiography as authoritative modalities for cardiac diagnosis. However, the prevailing and currently adopted solution is to manually carry out quality evaluation where an echocardiography specialist visually inspects several acquired images to make clinical decisions of its perceived quality and prognosis. This is a lengthening process and laced with variability of opinion consequently affection diagnostic responses. The goal of the research is to provide a multi-discipline, state-of-the-art solution that allows objective quality assessment of echocardiogram and to guarantee the reliability of clinical quantification processes. Computer graphic processing unit simulations, medical imaging analysis and deep convolutional neural network models were employed to achieve this goal. From a finite pool of echocardiographic patient datasets, 1650 random samples of echocardiogram cine-loops from different patients with age ranges from 17 and 85 years, who had undergone echocardiography between 2010 and 2020 were evaluated. We defined a set of pathological and anatomical criteria of image quality by which apical-four and parasternal long axis frames can be evaluated with feasibility for real-time optimization. The selected samples were annotated for multivariate model developments and validation of predicted quality score per frame. The outcome presents a robust artificial intelligence algorithm that indicate frames’ quality rating, real-time visualisation of element of quality and updates quality optimization in real-time. A prediction errors of 0.052, 0.062, 0.069, 0.056 for visibility, clarity, depth-gain, and foreshortening attributes were achieved, respectively. The model achieved a combined error rate of 3.6% with average prediction speed of 4.24 ms per frame. The novel method established a superior approach to two-dimensional image quality estimation, assessment, and clinical adequacy on acquisition of echocardiogram prior to quantification and diagnosis of myocardial infarction

    Automated assessment of transthoracic echocardiogram image quality using deep neural networks

    Get PDF
    Background Standard views in two-dimensional echocardiography are well established but the quality of acquired images are highly dependent on operator skills and are assessed subjectively. This study is aimed at providing an objective assessment pipeline for echocardiogram image quality by defining a new set of domain-specific quality indicators. Consequently, image quality assessment can thus be automated to enhance clinical measurements, interpretation, and real-time optimization. Methods We have developed deep neural networks for the automated assessment of echocardiographic frame which were randomly sampled from 11,262 adult patients. The private echocardiography dataset consists of 33,784 frames, previously acquired between 2010 and 2020. Unlike non-medical images where full-reference metrics can be applied for image quality, echocardiogram's data is highly heterogeneous and requires blind-reference (IQA) metrics. Therefore, deep learning approaches were used to extract the spatiotemporal features and the image's quality indicators were evaluated against the mean absolute error. Our quality indicators encapsulate both anatomical and pathological elements to provide multivariate assessment scores for anatomical visibility, clarity, depth-gain and foreshortedness, respectively. Results The model performance accuracy yielded 94.4%, 96.8%, 96.2%, 97.4% for anatomical visibility, clarity, depth-gain and foreshortedness, respectively. The mean model error of 0.375±0.0052 with computational speed of 2.52 ms per frame (real-time performance) was achieved. Conclusion The novel approach offers new insight to objective assessment of transthoracic echocardiogram image quality and clinical quantification in A4C and PLAX views. Also lays stronger foundations for operator's guidance system which can leverage the learning curve for the acquisition of optimum quality images during transthoracic exam

    Neural architecture search of echocardiography view classifiers

    Get PDF
    Purpose: Echocardiography is the most commonly used modality for assessing the heart in clinical practice. In an echocardiographic exam, an ultrasound probe samples the heart from different orientations and positions, thereby creating different viewpoints for assessing the cardiac function. The determination of the probe viewpoint forms an essential step in automatic echocardiographic image analysis. Approach: In this study, convolutional neural networks are used for the automated identification of 14 different anatomical echocardiographic views (larger than any previous study) in a dataset of 8732 videos acquired from 374 patients. Differentiable architecture search approach was utilized to design small neural network architectures for rapid inference while maintaining high accuracy. The impact of the image quality and resolution, size of the training dataset, and number of echocardiographic view classes on the efficacy of the models were also investigated. Results: In contrast to the deeper classification architectures, the proposed models had significantly lower number of trainable parameters (up to 99.9% reduction), achieved comparable classification performance (accuracy 88.4% to 96%, precision 87.8% to 95.2%, recall 87.1% to 95.1%) and real-time performance with inference time per image of 3.6 to 12.6 ms. Conclusion: Compared with the standard classification neural network architectures, the proposed models are faster and achieve comparable classification performance. They also require less training data. Such models can be used for real-time detection of the standard views

    Computing the topology of a real algebraic plane curve whose defining equations are available only “by values”

    Get PDF
    This paper is devoted to introducing a new approach for computing the topology of a real algebraic plane curve presented either parametrically or defined by its implicit equation when the corresponding polynomials which describe the curve are known only “by values”. This approach is based on the replacement of the usual algebraic manipulation of the polynomials (and their roots) appearing in the topology determination of the given curve with the computation of numerical matrices (and their eigenvalues). Such numerical matrices arise from a typical construction in Elimination Theory known as the BĂ©zout matrix which in our case is specified by the values of the defining polynomial equations on several sample points

    2017 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1004/thumbnail.jp
    corecore