1,410 research outputs found

    A locally anisotropic geometrical model of space-time based on CMBR

    Get PDF
    We study a locally anisotropic model of General Relativity in the framework of a more general geometrical structure than the Riemannian one. In this model the observable anisotropy of the CMBR (WMAP) is represented by a tensor of anisotropy and it is included in the metric structure of space-time. As well, some interesting special cases of spaces are considered.Comment: 5 pages, 0 figures, 7th International Astronomy Conference of the Hellenic Astronomical Society, curvature and connection sections decreased, minor explanation added, fixed some typo

    Bright Source Subtraction Requirements For Redshifted 21 cm Measurements

    Get PDF
    The \hi 21 cm transition line is expected to be an important probe into the cosmic dark ages and epoch of reionization. Foreground source removal is one of the principal challenges for the detection of this signal. This paper investigates the extragalactic point source contamination and how accurately bright sources (1\gtrsim 1 ~Jy) must be removed in order to detect 21 cm emission with upcoming radio telescopes such as the Murchison Widefield Array (MWA). We consider the residual contamination in 21 cm maps and power spectra due to position errors in the sky-model for bright sources, as well as frequency independent calibration errors. We find that a source position accuracy of 0.1 arcsec will suffice for detection of the \hi power spectrum. For calibration errors, 0.05 % accuracy in antenna gain amplitude is required in order to detect the cosmic signal. Both sources of subtraction error produce residuals that are localized to small angular scales, \kperp \gtrsim 0.05 Mpc1^{-1}, in the two-dimensional power spectrum.Comment: 12 pages, 19 Figures, submitted to Ap

    Sharp Nash inequalities on manifolds with boundary in the presence of symmetries

    Full text link
    In this paper we establish the best constant A~opt(Mˉ)\widetilde A_{opt}(\bar{M}) for the Trace Nash inequality on a nn-dimensional compact Riemannian manifold in the presence of symmetries, which is an improvement over the classical case due to the symmetries which arise and reflect the geometry of manifold. This is particularly true when the data of the problem is invariant under the action of an arbitrary compact subgroup GG of the isometry group Is(M,g)Is(M,g), where all the orbits have infinite cardinal

    Detection of Signals from Cosmic Reionization using Radio Interferometric Signal Processing

    Full text link
    Observations of the HI 21cm transition line promises to be an important probe into the cosmic dark ages and epoch of reionization. One of the challenges for the detection of this signal is the accuracy of the foreground source removal. This paper investigates the extragalactic point source contamination and how accurately the bright sources (1\gtrsim 1 ~Jy) should be removed in order to reach the desired RMS noise and be able to detect the 21cm transition line. Here, we consider position and flux errors in the global sky-model for these bright sources as well as the frequency independent residual calibration errors. The synthesized beam is the only frequency dependent term included here. This work determines the level of accuracy for the calibration and source removal schemes and puts forward constraints for the design of the cosmic reionization data reduction scheme for the upcoming low frequency arrays like MWA,PAPER, etc. We show that in order to detect the reionization signal the bright sources need to be removed from the data-sets with a positional accuracy of 0.1\sim 0.1 arc-second. Our results also demonstrate that the efficient foreground source removal strategies can only tolerate a frequency independent antenna based mean residual calibration error of 0.2\lesssim 0.2 % in amplitude or 0.2\lesssim 0.2 degree in phase, if they are constant over each days of observations (6 hours). In future papers we will extend this analysis to the power spectral domain and also include the frequency dependent calibration errors and direction dependent errors (ionosphere, primary beam, etc).Comment: accepted by ApJ; 12 pages, 10 figure

    Prospects for detecting the 21cm forest from the diffuse intergalactic medium with LOFAR

    Get PDF
    We discuss the feasibility of the detection of the 21cm forest in the diffuse IGM with the radio telescope LOFAR. The optical depth to the 21cm line has been derived using simulations of reionization which include detailed radiative transfer of ionizing photons. We find that the spectra from reionization models with similar total comoving hydrogen ionizing emissivity but different frequency distribution look remarkably similar. Thus, unless the reionization histories are very different from each other (e.g. a predominance of UV vs. x-ray heating) we do not expect to distinguish them by means of observations of the 21cm forest. Because the presence of a strong x-ray background would make the detection of 21cm line absorption impossible, the lack of absorption could be used as a probe of the presence/intensity of the x-ray background and the thermal history of the universe. Along a random line of sight LOFAR could detect a global suppression of the spectrum from z>12, when the IGM is still mostly neutral and cold, in contrast with the more well-defined, albeit broad, absorption features visible at lower redshift. Sharp, strong absorption features associated with rare, high density pockets of gas could be detected also at z~7 along preferential lines of sight.Comment: 12 pages, 13 figures. MNRAS, in pres

    Foregrounds for observations of the cosmological 21 cm line: II. Westerbork observations of the fields around 3C196 and the North Celestial Pole

    Full text link
    In the coming years a new insight into galaxy formation and the thermal history of the Universe is expected to come from the detection of the highly redshifted cosmological 21 cm line. The cosmological 21 cm line signal is buried under Galactic and extragalactic foregrounds which are likely to be a few orders of magnitude brighter. Strategies and techniques for effective subtraction of these foreground sources require a detailed knowledge of their structure in both intensity and polarization on the relevant angular scales of 1-30 arcmin. We present results from observations conducted with the Westerbork telescope in the 140-160 MHz range with 2 arcmin resolution in two fields located at intermediate Galactic latitude, centred around the bright quasar 3C196 and the North Celestial Pole. They were observed with the purpose of characterizing the foreground properties in sky areas where actual observations of the cosmological 21 cm line could be carried out. The polarization data were analysed through the rotation measure synthesis technique. We have computed total intensity and polarization angular power spectra. Total intensity maps were carefully calibrated, reaching a high dynamic range, 150000:1 in the case of the 3C196 field. [abridged]Comment: 20 pages, 22 figures, accepted for publication in A&A. A version with full resolution figures is available at http://www.astro.rug.nl/~bernardi/NCP_3C196/bernardi.pd

    Realistic Simulations of the Galactic Polarized Foreground: Consequences for 21-cm Reionization Detection Experiments

    Get PDF
    Experiments designed to measure the redshifted 21~cm line from the Epoch of Reionization (EoR) are challenged by strong astrophysical foreground contamination, ionospheric distortions, complex instrumental response and other different types of noise (e.g. radio frequency interference). The astrophysical foregrounds are dominated by diffuse synchrotron emission from our Galaxy. Here we present a simulation of the Galactic emission used as a foreground module for the LOFAR- EoR key science project end-to-end simulations. The simulation produces total and polarized intensity over 10×1010^\circ \times 10^\circ maps of the Galactic synchrotron and free-free emission, including all observed characteristics of the emission: spatial fluctuations of amplitude and spectral index of the synchrotron emission, together with Faraday rotation effects. The importance of these simulations arise from the fact that the Galactic polarized emission could behave in a manner similar to the EoR signal along the frequency direction. As a consequence, an improper instrumental calibration will give rise to leakages of the polarized to the total signal and mask the desired EoR signal. In this paper we address this for the first time through realistic simulations.Comment: 14 pages, 8 figures, published in MNRA
    corecore