1,410 research outputs found
A locally anisotropic geometrical model of space-time based on CMBR
We study a locally anisotropic model of General Relativity in the framework
of a more general geometrical structure than the Riemannian one. In this model
the observable anisotropy of the CMBR (WMAP) is represented by a tensor of
anisotropy and it is included in the metric structure of space-time. As well,
some interesting special cases of spaces are considered.Comment: 5 pages, 0 figures, 7th International Astronomy Conference of the
Hellenic Astronomical Society, curvature and connection sections decreased,
minor explanation added, fixed some typo
Bright Source Subtraction Requirements For Redshifted 21 cm Measurements
The \hi 21 cm transition line is expected to be an important probe into the
cosmic dark ages and epoch of reionization. Foreground source removal is one of
the principal challenges for the detection of this signal. This paper
investigates the extragalactic point source contamination and how accurately
bright sources ( ~Jy) must be removed in order to detect 21 cm
emission with upcoming radio telescopes such as the Murchison Widefield Array
(MWA). We consider the residual contamination in 21 cm maps and power spectra
due to position errors in the sky-model for bright sources, as well as
frequency independent calibration errors. We find that a source position
accuracy of 0.1 arcsec will suffice for detection of the \hi power spectrum.
For calibration errors, 0.05 % accuracy in antenna gain amplitude is required
in order to detect the cosmic signal. Both sources of subtraction error produce
residuals that are localized to small angular scales, \kperp \gtrsim 0.05
Mpc, in the two-dimensional power spectrum.Comment: 12 pages, 19 Figures, submitted to Ap
Sharp Nash inequalities on manifolds with boundary in the presence of symmetries
In this paper we establish the best constant
for the Trace Nash inequality on a dimensional compact Riemannian manifold
in the presence of symmetries, which is an improvement over the classical case
due to the symmetries which arise and reflect the geometry of manifold. This is
particularly true when the data of the problem is invariant under the action of
an arbitrary compact subgroup of the isometry group , where all
the orbits have infinite cardinal
Detection of Signals from Cosmic Reionization using Radio Interferometric Signal Processing
Observations of the HI 21cm transition line promises to be an important probe
into the cosmic dark ages and epoch of reionization. One of the challenges for
the detection of this signal is the accuracy of the foreground source removal.
This paper investigates the extragalactic point source contamination and how
accurately the bright sources ( ~Jy) should be removed in order to
reach the desired RMS noise and be able to detect the 21cm transition line.
Here, we consider position and flux errors in the global sky-model for these
bright sources as well as the frequency independent residual calibration
errors. The synthesized beam is the only frequency dependent term included
here. This work determines the level of accuracy for the calibration and source
removal schemes and puts forward constraints for the design of the cosmic
reionization data reduction scheme for the upcoming low frequency arrays like
MWA,PAPER, etc. We show that in order to detect the reionization signal the
bright sources need to be removed from the data-sets with a positional accuracy
of arc-second. Our results also demonstrate that the efficient
foreground source removal strategies can only tolerate a frequency independent
antenna based mean residual calibration error of in amplitude
or degree in phase, if they are constant over each days of
observations (6 hours). In future papers we will extend this analysis to the
power spectral domain and also include the frequency dependent calibration
errors and direction dependent errors (ionosphere, primary beam, etc).Comment: accepted by ApJ; 12 pages, 10 figure
Prospects for detecting the 21cm forest from the diffuse intergalactic medium with LOFAR
We discuss the feasibility of the detection of the 21cm forest in the diffuse
IGM with the radio telescope LOFAR. The optical depth to the 21cm line has been
derived using simulations of reionization which include detailed radiative
transfer of ionizing photons. We find that the spectra from reionization models
with similar total comoving hydrogen ionizing emissivity but different
frequency distribution look remarkably similar. Thus, unless the reionization
histories are very different from each other (e.g. a predominance of UV vs.
x-ray heating) we do not expect to distinguish them by means of observations of
the 21cm forest. Because the presence of a strong x-ray background would make
the detection of 21cm line absorption impossible, the lack of absorption could
be used as a probe of the presence/intensity of the x-ray background and the
thermal history of the universe. Along a random line of sight LOFAR could
detect a global suppression of the spectrum from z>12, when the IGM is still
mostly neutral and cold, in contrast with the more well-defined, albeit broad,
absorption features visible at lower redshift. Sharp, strong absorption
features associated with rare, high density pockets of gas could be detected
also at z~7 along preferential lines of sight.Comment: 12 pages, 13 figures. MNRAS, in pres
Foregrounds for observations of the cosmological 21 cm line: II. Westerbork observations of the fields around 3C196 and the North Celestial Pole
In the coming years a new insight into galaxy formation and the thermal
history of the Universe is expected to come from the detection of the highly
redshifted cosmological 21 cm line. The cosmological 21 cm line signal is
buried under Galactic and extragalactic foregrounds which are likely to be a
few orders of magnitude brighter. Strategies and techniques for effective
subtraction of these foreground sources require a detailed knowledge of their
structure in both intensity and polarization on the relevant angular scales of
1-30 arcmin. We present results from observations conducted with the Westerbork
telescope in the 140-160 MHz range with 2 arcmin resolution in two fields
located at intermediate Galactic latitude, centred around the bright quasar
3C196 and the North Celestial Pole. They were observed with the purpose of
characterizing the foreground properties in sky areas where actual observations
of the cosmological 21 cm line could be carried out. The polarization data were
analysed through the rotation measure synthesis technique. We have computed
total intensity and polarization angular power spectra. Total intensity maps
were carefully calibrated, reaching a high dynamic range, 150000:1 in the case
of the 3C196 field. [abridged]Comment: 20 pages, 22 figures, accepted for publication in A&A. A version with
full resolution figures is available at
http://www.astro.rug.nl/~bernardi/NCP_3C196/bernardi.pd
Realistic Simulations of the Galactic Polarized Foreground: Consequences for 21-cm Reionization Detection Experiments
Experiments designed to measure the redshifted 21~cm line from the Epoch of
Reionization (EoR) are challenged by strong astrophysical foreground
contamination, ionospheric distortions, complex instrumental response and other
different types of noise (e.g. radio frequency interference). The astrophysical
foregrounds are dominated by diffuse synchrotron emission from our Galaxy. Here
we present a simulation of the Galactic emission used as a foreground module
for the LOFAR- EoR key science project end-to-end simulations. The simulation
produces total and polarized intensity over maps of
the Galactic synchrotron and free-free emission, including all observed
characteristics of the emission: spatial fluctuations of amplitude and spectral
index of the synchrotron emission, together with Faraday rotation effects. The
importance of these simulations arise from the fact that the Galactic polarized
emission could behave in a manner similar to the EoR signal along the frequency
direction. As a consequence, an improper instrumental calibration will give
rise to leakages of the polarized to the total signal and mask the desired EoR
signal. In this paper we address this for the first time through realistic
simulations.Comment: 14 pages, 8 figures, published in MNRA
- …
