157 research outputs found
High‐density sphere packing for discrete element method simulations
The first step in a discrete element simulation is the discretization of the domain into a set of particles. The cost of generating a good cylindrical or spherical packing has resulted in a great number of approaches during the last years. A new algorithm is proposed for high‐density packing using a scheme that minimizes the distance between each particle. Using the support of a finite element mesh, less time is needed in order to achieve a low porosity configuration. In addition, a boundary constraint is introduced. The application of the same optimization scheme is used as a condition to force a good surface definition. The results obtained show a high efficiency for the generation of low porosity packing, achieving values smaller than 10% in 2D cases and 30% in 3D cases. 
Advances in the development of the discrete element method for excavation processes
Modelling of granular materials, soils and rocks has been a challenging topic of investigation for decades. Classical continuum mechanics has been used to idealize soils and rocks, and numerical solution techniques such as finite element method (FEM) has been used to model these materials. Considering the idealization of the material, continuum mechanics allows the analysis of phenomena with discontinuous nature such as fracture in rock or soil via damage models. However, in more complex processes like rock milling or crushing, this kind of models are usually not suitable. Discrete models are more appropriate for problems with multiple discontinuities and particulate materials.
The discrete element method (DEM) has been gaining popularity in analysis of granular materials, soils and rocks. Many aspects of this method still require more profound investigation.
This thesis presents new developments of the discrete element method improving effi ciency and accuracy of modelling of rock-like materials, especially in excavation processes. All the numerical algorithms has been implemented in an in-house software, which was then used to run numerical examples.
The basic formulation of DEM with linear elastic-perfectly brittle contact model is presented. The main di erence with other models found in the literature is the consideration of global sti ness and strength parameters that are constants in the whole model.
The result of a simulations is strongly related with the con guration of the particle assembly used. Particle assemblies should be su ciently compact and ensure the isotropy to reproduce the physical properties of the modelled material. This thesis presents a novel technique for the generation of highly dense particle assemblies in arbitrary geometries, satisfying all the requirements for accurate discrete element simulations.
One of the key issues in the use of the DEM is the estimation of the contact model parameters. A methodology is proposed for the estimation of the contact model parameters yielding required macroscopic properties of the material. The relationships between the contact model parameters and the mechanical properties of brittle materials, as well as the influence of the particles assembly con guration on the macroscopic properties, are analysed.
A major di culty in the application of the DEM to real engineering problems is the high computational cost in simulation involving a large number of particles. The most common way to solve this is the use of parallel computing techniques, where multiple processors are used. As an alternative, a coupling scheme between DEM and the finite element method (FEM) is proposed in the thesis. Within the hybrid DEM/FEM model, DEM is only used in the region of the domain where it provides an advantage over a continuum-based approach, as the FEM. The coupling is dynamically adapted, starting with the whole domain discretized with FEM. During the simulation, in the regions where a high stress level are found, a change of modelling method from continuum FEM to the discrete DEM is employed.
Finally, all the developments are applied to the simulation of a real excavation process. An analysis of the rock cutting process with TBM disc cutters is performed, where DEM and the DEM/FEM coupling technique presents an important advantage over other simulation techniques.La modelación de materiales granulares, terrenos y rocas ha sido un desafío para la investigación por décadas. La mecánica del continuo clásica ha sido utilizada para idealizar terrenos y rocas, y técnicas numéricas de solución, como el método de los elementos finitos (FEM), han sido usadas para modelar estos materiales. Considerando la idealización del material, la mecánica del continuo permite el análisis de fenómenos de naturaleza discontinua como la fractura en rocas y terreno mediante modelos de daño. Sin embargo, en procesos mas complejos como la molienda o trituración de roca, este tipo de modelos no suelen ser adecuados. Los modelos discretos son mas apropiados para problemas con múltiples discontinuidades y material particulado. El método de los elementos discretos (DEM) ha ido ganando popularidad en el análisis de materiales granulares, terrenos y rocas. Sin embargo, muchos aspectos de este método todavía requieren una investigación mas profunda.
Esta tesis presenta nuevos desarrollos del método de los elementos discretos para mejorar su eficiencia y precisión en el modelado de materiales como roca, especialmente para procesos de excavación. Todos los algoritmos numéricos se han implementado en el programa propio, que ha sido utilizado para probar distintos ejemplos. La formulación básica del DEM, con un modelo lineal de contacto elástico perfectamente frágil ha sido utilizado en el presente trabajo. La principal diferencia
con otros modelos de la literatura es la consideración de que los parámetros de rigidez y fuerzas máximas son valores globales y constantes en todo el modelo.
El resultado de la simulación está fuertemente relacionado con la configuración del ensamblaje de partículas utilizado. El ensamblaje de partículas debe ser suficientemente compacto y asegurar la isotropía de las propiedades físicas del material modelado.
La tesis presenta una nueva técnica para la generación de ensamblajes de partículas de alta densidad para geometrías arbitrarias, satisfaciendo todos los requisitos para una simulación con elementos discretos correcta.
Uno de los temas clave en el uso del DEM es la estimación de los parámetros del modelo de contacto. Se propone una metodología para la estimación de los parámetros del modelo de contacto siguiendo las propiedades macroscópicas requeridas en el material
Las relaciones entre los parámetros del modelo y las propiedades mecánicas de materiales frágiles, así como su la influencia de la configuración del ensamblaje de partículas son analizadas.
Una gran dificultad en la aplicación del DEM en problemas reales de ingeniería es el alto costo computacional de simulaciones que consideran un gran número de partículas. La solución mas común para resolver esto es el uso de técnicas de computación paralela, donde se utiliza un gran número de procesadores. Como vía alternativa, un esquema acoplado entre el DEM y el FEM expuesto en la tesis. Con el modelo híbrido DEM/FEM, el DEM es usado solo en las partes del dominio donde presenta ventajas sobre el enfoque continuo del FEM. El acoplamiento puede ser adaptado dinámicamente, comenzando con todo el dominio discretizado con FEM, y durante la simulación, en las regiones donde se encuentran altos niveles de tensión, se emplea un cambio del método de simulación de continuo (FEM) a discreto (DEM).
Finalmente, todos los desarrollos son aplicados a la simulación de un proceso excavación real. Se realiza un estudio del proceso de corte de roca con discos costadores, utilizados en tuneladoras, donde el DEM y la técnica de acoplamiento presentan una importante ventaja sobre otras técnicas de simulación
Advances in discrete element modelling of underground excavations
The paper presents advances in the discrete element modelling of underground excavation processes extending modelling possibilities as well as increasing computational efficiency. Efficient numerical models have been obtained using techniques of parallel computing and coupling the discrete element method with finite element method. The discrete element algorithm has been applied to simulation of different excavation processes, using different tools, TBMs and roadheaders. Numerical examples of tunnelling process are included in the paper, showing results in the form of rock failure, damage in the material, cutting forces and tool wear. Efficiency of the code for solving large scale geomechanical problems is also show
Modelling and simulation of the effect loading on structures using and adaptive blending of discrete and finite element methods
We present a new computational model for predicting the effect of blast loading on structures. The model is based in the adaptive coupling of the finite element method (FEM) and the discrete element method (DEM) for the accurate reproduction of multifracturing and failure of structures under blast loading. In the paper we briefly describe the basis of the coupled DEM/FEM technology and demonstrate its efficiency in its application to the study of the effect of blast loading on a masonry wall, a masonry tunnel and a double curvature dam
Discrete element simulation of rock cutting
This paper presents numerical modelling of rock cutting processes. The model consists of a tool–rock system. The rock is modelled using the discrete element method, which is suitable to study problems of multiple material fracturing such as those involved in rock cutting. Both 2D and 3D models are considered in this work. The paper presents a brief overview of the theoretical formulation and calibration of the discrete element model by a methodology combining the dimensional analysis with simulation of the unconfined compressive strength (UCS) and indirect tension (Brazilian) tests. The rock cutting process with roadheader picks, which is typical for underground excavation, has been simulated. The results of the 2D and 3D analyses have been compared with one another, and numerical results have been compared with the available experimental data
Análisis de la resolución de problemas de física en secundaria y primer curso universitario en Chile
La aspiración actual de la educación científica de enseñar a las personas cómo enfrentarse a problemas, de desarrollar destrezas de alto nivel intelectual al mismo tiempo que conocimientos específicos queda reducida en la enseñanza habitual de la física a la resolución de problemas de «lápiz y papel» al final de los temas. Sin embargo, el fracaso generalizado de los alumnos en esta actividad requiere poner en cuestión si, de verdad, se les está enseñando a resolver problemas. El análisis realizado de textos y profesores pone en evidencia que no se les enseña a resolver problemas, sino que se les explican soluciones ya hechas, transmitiendo serias deficiencias actitudinales y metodológicas que hacen enormemente difícil que puedan tener éxito ante nuevos problemas.One of the expectations in Science Education nowadays is to teach people how to solve problems, to develop high-level intellectual skills at the same time that specific knowledge is acquired. In common practice of Physics Education, this objective is usually limited to solving «paper and pencil» problems appearing at the end of each book chapter. However, the widespread failure of students in this activity forces us to question if, indeed, we are teaching them how to solve problems. An analysis of both textbooks and teachers' practices shows that students are not taught how to solve problems but, instead, ready-made solutions are just explained to the students. This procedure transmits serious deficiencies both in attitudinal and methodological terms, which makes it very difficult for them to tackle new problems
Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters
Comparative studies of different discrete element models of a rock-type material are presented. The discrete element formulation employs spherical particles with the cohesive interaction model combining linear elastic behaviour with brittle failure. Numerical studies consisted in simulation of the uniaxial compression test. Two cylindrical specimens with particle size distributions yielding different degree of heterogeneity have been used. Macroscopic response produced by different discrete element models has been compared. The main difference between the compared models consists in the evaluation of micromechanical constitutive parameters. Two approaches are compared. In the first approach, the contact stiffness and strength parameters depend on the local particle size, while in the second approach, global uniform contact parameters are assumed for all the contacting pairs in function of average geometric measures characterizing the particle assembly. The size dependent contact parameters are calculated as functions of geometric parameters characterizing each contacting particle pair. As geometric scaling parameters, the arithmetic and harmonic means, as well as the minimum of the radii of two contacting particles are considered. Two different models with size dependent contact parameters are formulated. The performance of these models is compared with that of the discrete element model with global uniform contact parameters. Equivalence between the models with size dependent and uniform contact parameters has been checked. In search of this equivalence, different methods of evaluation of global uniform parameters have been studied. The contact stiffness has been evaluated in terms of the average radius of the particle assembly or in terms of the averages of the arithmetic and harmonic means of the contact pair radii, the geometric parameters used in the evaluation of the contact stiffness in the size-dependent models. The uniform contact strengths have been determined as functions of the averages of radii squares, squares of arithmetic radii means or squares of minimum radii of the contacting pairs.
For the more homogenous specimen, the models with local size dependent parameters and models with global uniform parameters give similar response. The models with uniform parameters evaluated according to the averages of the geometric parameters used in the evaluation of local parameters ensure better agreement with the respective models with size-dependent parameters than the models with uniform parameters evaluated according to the particle radii. Simulations using the more heterogenous specimen reveal differences between the considered models. There are significant differences in stress–strain curves as well as in the failure pattern. The models with local size-dependent parameters are more sensitive to the change of heterogeneity than the model with global uniform parameters
Lucky 13
Jenny Lambert latest Furman student to receive Truman Awar
Influencia de las estrategias realizadas por las empresas multinacionales de bebidas gaseosas en la industria nacional
96 p.Las características actuales de la industria nacional de bebidas gaseosas; alto consumo per cápita, grandes montos invertidos en publicidad. Alta rentabilidad y una encarnizada competencia por lograr la preferencia de los consumidores, entre otras. Nos lleva a preguntarnos como y cuando fueron determinadas dichas características. El objetivo del presente trabajo es responder a esto, para lo cual ha sido dividido en tres partes. La primera abarca el Capítulo 3, en ella se recaban los antecedentes de la industria de bebidas gaseosas en Estados Unidos, identificando a los participantes, la forma en que se relacionan, las principales barreras de entrada, las estrategias implementadas a partir de la segunda mitad de la década de los setenta por los dos más grandes productores de concentrado y los cambios que éstas produjeron en los precios, en los productos, en publicidad, en integración y en las barreras de entrada a la industria. La segunda parte está constituida por el Capitulo 4. En ella se realiza un análisis de la industria de bebidas gaseosas en Chile donde se establece que operan solo dos productores de concentrado (COCA-COLA COMPANY y PEPSICO) y, por tanto, la existencia de dos sistemas de embotelladores. También se establece el dominio que tienen los productores de concentrado sobre los embotelladores, gracias a las ventajas del sistema de embotellado por franquicia. Finalmente, se concluye que las principales tendencias a futuro de la industria serán la preferencia por envases cada vez más grandes, la concentración de los embotelladores y las consecuencias para la industria de su ingreso a la etapa de madurez. En la última parte se realiza una comparación donde se identifican los efectos de los cambios estratégicos realizadas por los dos más grandes productores de concentrado tanto en Estados Unidos como en Chile De esta comparación se obtienen importantes conclusiones, siendo la más importante el hecho que las estrategias implementadas en Estados Unidos por COCA-COLA COMPANY y por PEPSICO provocaron importantes cambios en la industria nacional. Sin embargo, estos cambios no fueron iguales a los ocurridos en Estados Unidos, incluso algunos fueron radicalmente distintos a los ocurridos en ese país
- …