416 research outputs found

    A Novel 3-Methyladenine DNA Glycosylase from Helicobacter pylori Defines a New Class within the Endonuclease III Family of Base Excision Repair Glycosylases

    Get PDF
    The cloning, purification, and characterization of MagIII, a 3-methyladenine DNA glycosylase from Helicobacter pylori, is presented in this paper. Sequence analysis of the genome of this pathogen failed to identify open reading frames potentially coding for proteins with a 3-methyladenine DNA glycosylase activity. The putative product of the HP602 open reading frame, reported as an endonuclease III, shares extensive amino acid sequence homology with some bacterial members of this family and has the canonic active site helix-hairpin-helix-GPD motif. Surprisingly, this predicted H. pylori endonuclease III encodes a 25,220-Da protein able to release 3-methyladenine, but not oxidized bases, from modified DNA. MagIII has no abasic site lyase activity and displays the substrate specificity of the 3-methyladenine-DNA glycosylase type I of Escherichia coli (Tag) because it is not able to recognize 7-methylguanine or hypoxanthine as substrates. The expression of the magIII open reading frame in null 3-methyladenine glycosylase E. coli (tag alkA) restores to this mutant partial resistance to alkylating agents. MagIII-deficient H. pylori cells show an alkylation-sensitive phenotype. H. pylori wild type cells exposed to alkylating agents present an adaptive response by inducing the expression of magIII. MagIII is thus a novel bacterial member of the endonuclease III family, which displays biochemical properties not described for any of the members of this group until now.Fil: O'Rourke, Eyleen J.. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Chevalier, Catherine. Instituto Pasteur; FranciaFil: Boiteux, Serge. Centre National de la Recherche Scientifique; FranciaFil: Labigne, Agnès. Instituto Pasteur; FranciaFil: Ielpi, Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Radicella, Juan Pablo. Centre National de la Recherche Scientifique; Franci

    Role of AmiA in the Morphological Transition of Helicobacter pylori and in Immune Escape

    Get PDF
    The human gastric pathogen Helicobacter pylori is responsible for peptic ulcers and neoplasia. Both in vitro and in the human stomach it can be found in two forms, the bacillary and coccoid forms. The molecular mechanisms of the morphological transition between these two forms and the role of coccoids remain largely unknown. The peptidoglycan (PG) layer is a major determinant of bacterial cell shape, and therefore we studied H. pylori PG structure during the morphological transition. The transition correlated with an accumulation of the N-acetyl-D-glucosaminyl-β(1,4)-N-acetylmuramyl-L-Ala–D-Glu (GM-dipeptide) motif. We investigated the molecular mechanisms responsible for the GM-dipeptide motif accumulation, and studied the role of various putative PG hydrolases in this process. Interestingly, a mutant strain with a mutation in the amiA gene, encoding a putative PG hydrolase, was impaired in accumulating the GM-dipeptide motif and transforming into coccoids. We investigated the role of the morphological transition and the PG modification in the biology of H. pylori. PG modification and transformation of H. pylori was accompanied by an escape from detection by human Nod1 and the absence of NF-κB activation in epithelial cells. Accordingly, coccoids were unable to induce IL-8 secretion by AGS gastric epithelial cells. amiA is, to our knowledge, the first genetic determinant discovered to be required for this morphological transition into the coccoid forms, and therefore contributes to modulation of the host response and participates in the chronicity of H. pylori infection

    Mosaic DNA imports with interspersions of recipient sequence after natural transformation of Helicobacter pylori

    Get PDF
    Helicobacter pylori colonizes the gastric mucosa of half of the human population, causing gastritis, ulcers, and cancer. H. pylori is naturally competent for transformation by exogenous DNA, and recombination during mixed infections of one stomach with multiple H. pylori strains generates extensive allelic diversity. We developed an in vitro transformation protocol to study genomic imports after natural transformation of H. pylori. The mean length of imported fragments was dependent on the combination of donor and recipient strain and varied between 1294 bp and 3853 bp. In about 10% of recombinant clones, the imported fragments of donor DNA were interrupted by short interspersed sequences of the recipient (ISR) with a mean length of 82 bp. 18 candidate genes were inactivated in order to identify genes involved in the control of import length and generation of ISR. Inactivation of the antimutator glycosylase MutY increased the length of imports, but did not have a significant effect on ISR frequency. Overexpression of mutY strongly increased the frequency of ISR, indicating that MutY, while not indispensable for ISR formation, is part of at least one ISR-generating pathway. The formation of ISR in H. pylori increases allelic diversity, and contributes to the uniquely low linkage disequilibrium characteristic of this pathogen

    Differential genome analysis applied to the species-specific features of Helicobacter pylori

    Get PDF
    AbstractWe introduce a simple and rapid strategy to identify genes that are responsible for species-specific phenotypes. The genome of a species that has a specific phenotype is compared with at least one, closely related, species that lacks this phenotype. Homologous genes that are shared among the species compared are identified and discarded from the list of candidates for species-specific genes. The process is automated and rapidly yields a small subset of the genome that likely contains genes responsible for the species-specific features. Functions are assigned to the genes, and dubious annotations are filtered out. Information is extracted not only from the presence of genes, but also from their absence with respect to known phenotypes. We have applied the technique to identify a set of species-specific genes in Helicobacter pylori by comparing it with its closest relatives for which complete genome sequences are available, Haemophilus influenzae and Escherichia coli. Of the genes of this set for which functional features can be obtained, a large fraction (63%, 123 proteins) is (potentially) involved in H. pylori's interaction with its host. We hypothesize that a family of outer membrane proteins is critical for the ability of H. pylori to colonize host cells in highly acidic environments

    Effect of Pertussis Toxin and Herbimycin A on Proteinase-Activated Receptor 2-Mediated Cyclooxygenase 2 Expression in Helicobacter pylori-Infected Gastric Epithelial AGS Cells

    Get PDF
    Helicobacter pylori (H. pylori) is an important risk factor for chronic gastritis, peptic ulcer, and gastric cancer. Proteinase-activated receptor 2 (PAR2), subgroup of G-protein coupled receptor family, is highly expressed in gastric cancer, and chronic expression of cyclooxygenase-2 (COX-2) plays an important role in H. pylori-associated gastric carcinogenesis and inflammation. We previously demonstrated that H. pylori induced the expression of PAR2 and COX-2 in gastric epithelial cells. Present study aims to investigate whether COX-2 expression induced by H. pylori in Korean isolates is mediated by PAR2 via activation of Gi protein and Src kinase in gastric epithelial AGS cells. Results showed that H. pylori-induced COX-2 expression was inhibited in the cells transfected with antisense oligonucleotide for PAR2 or treated with Gi protein blocker pertussis toxin, Src kinase inhibitor herbimycin A and soybean trypsin inbitor, indicating that COX-2 expression is mediated by PAR2 through activation of Gi protein and Src kinase in gastric epithelial cells infected with H. pylori in Korean isolates. Thus, targeting the activation of PAR2 may be beneficial for prevention or treatment of gastric inflammation and carcinogenesis associated with H. pylori infection

    From array-based hybridization of Helicobacter pylori isolates to the complete genome sequence of an isolate associated with MALT lymphoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>elicobacter pylori </it>infection is associated with several gastro-duodenal inflammatory diseases of various levels of severity. To determine whether certain combinations of genetic markers can be used to predict the clinical source of the infection, we analyzed well documented and geographically homogenous clinical isolates using a comparative genomics approach.</p> <p>Results</p> <p>A set of 254 <it>H. pylori </it>genes was used to perform array-based comparative genomic hybridization among 120 French <it>H. pylori </it>strains associated with chronic gastritis (n = 33), duodenal ulcers (n = 27), intestinal metaplasia (n = 17) or gastric extra-nodal marginal zone B-cell MALT lymphoma (n = 43). Hierarchical cluster analyses of the DNA hybridization values allowed us to identify a homogeneous subpopulation of strains that clustered exclusively with <it>cag</it>PAI minus MALT lymphoma isolates. The genome sequence of B38, a representative of this MALT lymphoma strain-cluster, was completed, fully annotated, and compared with the six previously released <it>H. pylori </it>genomes (i.e. J99, 26695, HPAG1, P12, G27 and Shi470). B38 has the smallest <it>H. pylori </it>genome described thus far (1,576,758 base pairs containing 1,528 CDSs); it contains the <it>vacA</it>s2m2 allele and lacks the genes encoding the major virulence factors (absence of <it>cag</it>PAI, <it>bab</it>B, <it>bab</it>C, <it>sab</it>B, and <it>hom</it>B). Comparative genomics led to the identification of very few sequences that are unique to the B38 strain (9 intact CDSs and 7 pseudogenes). Pair-wise genomic synteny comparisons between B38 and the 6 <it>H. pylori </it>sequenced genomes revealed an almost complete co-linearity, never seen before between the genomes of strain Shi470 (a Peruvian isolate) and B38.</p> <p>Conclusion</p> <p>These isolates are deprived of the main <it>H. pylori </it>virulence factors characterized previously, but are nonetheless associated with gastric neoplasia.</p

    Using Macro-Arrays to Study Routes of Infection of Helicobacter pylori in Three Families

    Get PDF
    allowed tracing the spread of infection through populations on different continents but transmission pathways between individual humans have not been clearly described.To investigate person-to-person transmission, we studied three families each including one child with persistence of symptoms after antibiotic treatment. Ten isolates from the antrum and corpus of stomach of each family member were analyzed both by sequencing of two housekeeping genes and macroarray tests. from outside the family appeared to be probable in the transmission pathways. infection may be acquired by more diverse routes than previously expected

    Phylogenetic and Molecular Characterization of a 23S Ribosomal-Rna Gene Positions the Genus Campylobacter in the Epsilon-Subdivision of the Proteobacteria and Shows That the Presence of Transcribed Spacers Is Common in Campylobacter Spp

    Get PDF
    The nucleotide sequence of a 23S rRNA gene of Campylobacter coli VC167 was determined. The primary sequence of the C. coli 23S rRNA was deduced, and a secondary-structure model was constructed. Comparison with Escherichia coli 23S rRNA showed a major difference in the C. coli rRNA at approximately position 1170 (E. coli numbering) in the form of an extra sequence block approximately 147 bp long. PCR analysis of 31 other strains of C. coli and C. jejuni showed that 69% carried a transcribed spacer of either ca, 147 or ca. 37 bp. Comparison of all sequenced Campylobacter transcribed spacers showed that the Campylobacter inserts were related in sequence and percent G+C content. All Campylobacter strains carrying transcribed spacers in their 23S rRNA genes produced fragmented 23S rRNAs. Other strains which produced unfragmented 23S rRNAs did not appear to carry transcribed spacers at this position in their 23S rRNA genes. At the 1850 region (E. coli numbering), Campylobacter 23S rRNA displayed a base pairing signature most like that of the beta and gamma subdivisions of the class Proteobacteria, but in the 270 region, Campylobacter 23S rRNA displayed a helix signature which distinguished it from the alpha, beta, and gamma subdivisions. Phylogenetic analysis comparing C. coli VC167 23S rRNA and a C. jejuni TGH9011 (ATCC 43431) 23S rRNA with 53 other completely sequenced (eu)bacterial 23S rRNAs showed that the two campylobacters form a sister group to the alpha, beta, and gamma proteobacterial 23S rRNAs, a positioning consistent with the idea that the genus Campylobacter belongs to the epsilon subdivision of the class Proteobacteria
    corecore