49 research outputs found

    Modelling the response of urban lichens to broad-scale changes in air pollution and climate

    Get PDF
    To create more resilient cities, it is important that we understand the effects of the global change drivers in cities. Biodiversity-based ecological indicators (EIs) can be used for this, as biodiversity is the basis of ecosystem structure, composition, and function. In previous studies, lichens have been used as EIs to monitor the effects of global change drivers in an urban context, but only in single-city studies. Thus, we currently do not understand how lichens are affected by drivers that work on a broader scale. Therefore, our aim was to quantify the variance in lichen biodiversity-based metrics (taxonomic and trait-based) that can be explained by environmental drivers working on a broad spatial scale, in an urban context where local drivers are superimposed. To this end, we performed an unprecedented effort to sample epiphytic lichens in 219 green spaces across a continental gradient from Portugal to Estonia. Twenty-six broad-scale drivers were retrieved, including air pollution and bio-climatic variables, and their dimensionality reduced by means of a principal component analysis (PCA). Thirty-eight lichen metrics were then modelled against the scores of the first two axes of each PCA, and their variance partitioned into pollution and climate components. For the first time, we determined that 15% of the metric variance was explained by broad-scale drivers, with broad-scale air pollution showing more importance than climate across the majority of metrics. Taxonomic metrics were better explained by air pollution, as expected, while climate did not surpass air pollution in any of the trait-based metric groups. Consequently, 85% of the metric variance was shown to occur at the local scale. This suggests that further work is necessary to decipher the effects of climate change. Furthermore, although drivers working within cities are prevailing, both spatial scales must be considered simultaneously if we are to use lichens as EIs in cities at continental to global scales.info:eu-repo/semantics/publishedVersio

    Wild bee larval food composition in five European cities

    Get PDF
    Urbanization poses threats and opportunities for the biodiversity of wild bees. At the same time, cities can harbor diverse wild bee assemblages, partly due to the unique plant assemblages that provide resources. While bee dietary preferences have been investigated in various studies, bee dietary studies have been conducted mostly in nonurban ecosystems and data based on plant visitation observations or palynological techniques. This data set describes the larval food preferences of four wild bee species (i.e., Chelostoma florisomne, Hylaeus communis, Osmia bicornis, and O. cornuta) common in urban areas in five different European cities (i.e., Antwerp, Belgium; Paris, France; Poznan, Poland; Tartu, Estonia; and Zurich, Switzerland). In addition, the data set describes the larval food preferences of individuals from three wild bee genera (i.e., Chelostoma sp., Hylaeus sp., and Osmia sp.) that could not be identified to the species level. These data were obtained from a Europe-level study aimed at understanding the effects of urbanization on biodiversity across different cities and cityscapes and a Swiss project aimed at understanding the effects of urban ecosystems in wild bee feeding behavior. Wild bees were sampled using standardized trap nests at 80 sites (32 in Zurich and 12 in each of the remaining cities), selected following a double gradient of available habitat at local and landscape scales. Larval pollen was obtained from the bee nests and identified using DNA metabarcoding. The data provide the plant composition at the species or genus level preferred by each bee. These unique data can be used for a wide array of research questions, including urban ecology (e.g., diversity of food sources along urban gradients), bee ecology (characterization of bee feeding preferences), or comparative studies on the urban evolution of behavioral traits between urban and nonurban sites. In addition, the data can be used to inform urban planning and conservation strategies, particularly concerning flower resources (e.g., importance of exotic species and, thus, management activities). This data set can be freely used for noncommercial purposes, and this data paper should be cited if the data is used; we request that collaboration with the data set contact person to be considered if this data set represents an important part of the data analyzed in a study.info:eu-repo/semantics/publishedVersio

    The positive effect of plant diversity on soil carbon depends on climate

    Get PDF
    Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates

    Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (\u3c50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities

    Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough; CanadáFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Baez, Selene. Escuela Politécnica Nacional; EcuadorFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Boughton, Elizabeth H.. Archbold Biological Station; Estados UnidosFil: Buckley, Yvonne M.. Trinity College Dublin; IrlandaFil: Bugalho, Miguel Nuno. Universidad de Lisboa; PortugalFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: Dwyer, John. University of Queensland; AustraliaFil: Firn, Jennifer. The University of Queensland; AustraliaFil: Gridzak, Riley. Queens University; CanadáFil: Hagenah, Nicole. University of Pretoria; SudáfricaFil: Hautier, Yann. Utrecht University; Países BajosFil: Helm, Aveliina. University of Tartu; EstoniaFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Knops, Johannes M. H.. Xi'an Jiaotong Liverpool University; China. University of Nebraska; Estados UnidosFil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados UnidosFil: Laanisto, Lauri. Estonian University of Life Sciences; EstoniaFil: Laungani, Ramesh. Poly Prep Country Day School; Estados UnidosFil: McCulley, Rebecca. University of Kentucky; Estados UnidosFil: Moore, Joslin L.. Monash University; AustraliaFil: Morgan, John W.. La Trobe University; AustraliaFil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur. Estación Experimental Agropecuaria Santa Cruz. Agencia de Extensión Rural Río Gallegos; ArgentinaFil: Power, Sally A.. University of Western Sydney; AustraliaFil: Price, Jodi. Charles Sturt University; AustraliaFil: Sankaran, Mahesh. National Centre for Biological Sciences; IndiaFil: Schamp, Brandon. Algoma University; CanadáFil: Speziale, Karina Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Standish, Rachel. Murdoch University; AustraliaFil: Virtanen, Risto. University of Oulu; FinlandiaFil: Cadotte, Marc W.. University of Toronto Scarborough; Canadá. University of Toronto; Canad

    Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.National Science Foundation; Natural Sciences and Engineering Research Council of Canada; Institute on the Environment, University of Minnesota and Portuguese Science Foundation.http://www.ecolevol.orghj2022Mammal Research InstituteZoology and Entomolog

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Publication history: Accepted - 19 May 2021; Published - 5 August 2021.Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait–environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.Eesti Teadusagentuur, Grant/Award Number: PRG609 and PUT1409; Academy of Finland; Natural Sciences and Engineering Research Council of Canada; Science Foundation Ireland, Grant/Award Number: 15/ERCD/2803; Spanish Ministry of Science, Innovation and Universities, Grant/Award Number: IJCI-2017- 32039; European Regional Development Fun

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness
    corecore