156 research outputs found

    From infall to rotation around young stellar objects: A transitional phase with a 2000 AU radius contracting disk?

    Get PDF
    Evidence for a transitional stage in the formation of a low-mass star is reported, intermediate between the fully embedded and the T Tauri phases. Millimeter aperture synthesis observations in the HCO+ J=1-0 and 3-2, HCN 1-0, 13CO 1-0, and C18O 1-0 transitions reveal distinctly different velocity fields around two embedded, low-mass young stellar objects. The 0.6 M(sun) of material around TMC 1 (IRAS 04381+2517) closely follows inside-out collapse in the presence of a small amount of rotation (~3 km/s/pc), while L1489 IRS (IRAS 04016+2610) is surrounded by a 2000 AU radius, flared disk containing 0.02 M(sun). This disk shows Keplerian rotation around a ~0.65 M(sun) star and infall at 1.3 (r/100 AU)^-0.5 km/s, or, equivalently, sub-Keplerian motions around a central object between 0.65 and 1.4 M(sun). Its density is characterized by a radial power law and an exponential vertical scale height. The different relative importance of infall and rotation around these two objects suggests that rotationally supported structures grow from collapsing envelopes over a few times 10^5 yr to sizes of a few thousand AU, and then decrease over a few times 10^4 yr to several hundred AU typical for T Tauri disks. In this scenario, L1489 IRS represents a transitional phase between embedded YSOs and T Tauri stars with disks. The expected duration of this phase of ~5% of the embedded stage is consistent with the current lack of other known objects like L1489 IRS. Alternative explanations cannot explain L1489 IRS's large disk, such as formation from a cloud core with an unusually large velocity gradient or a binary companion that prevents mass accretion onto small scales. It follows that the transfer and dissipation of angular momentum is key to understanding the formation of disks from infalling envelopes.Comment: Accepted ApJ. 33 pages, including 10 B/W figures and 1 color figure. Uses AASTe

    Detection of Acetylene toward Cepheus A East with Spitzer

    Full text link
    The first map of interstellar acetylene (C2H2) has been obtained with the infrared spectrograph onboard the Spitzer Space Telescope. A spectral line map of the ν5\nu_5 vibration-rotation band at 13.7 microns carried out toward the star-forming region Cepheus A East, shows that the C2H2 emission peaks in a few localized clumps where gas-phase CO2 emission was previously detected with Spitzer. The distribution of excitation temperatures derived from fits to the C2H2 line profiles ranges from 50 to 200 K, a range consistent with that derived for gaseous CO2 suggesting that both molecules probe the same warm gas component. The C2H2 molecules are excited via radiative pumping by 13.7 microns continuum photons emanating from the HW2 protostellar region. We derive column densities ranging from a few x 10^13 to ~ 7 x 10^14 cm^-2, corresponding to C2H2 abundances of 1 x 10^-9 to 4 x 10^-8 with respect to H2. The spatial distribution of the C2H2 emission along with a roughly constant N(C2H2)/N(CO2) strongly suggest an association with shock activity, most likely the result of the sputtering of acetylene in icy grain mantles.Comment: 11 pages, 5 figures, accepted for publication in ApJ Letter

    CASSIS: The Cornell Atlas of Spitzer/Infrared Spectrograph Sources. II. High-resolution observations

    Get PDF
    The Infrared Spectrograph (IRS) on board the Spitzer Space Telescope observed about 15,000 objects during the cryogenic mission lifetime. Observations provided low-resolution (R~60-127) spectra over ~5-38um and high-resolution (R~600) spectra over ~10-37um. The Cornell Atlas of Spitzer/IRS Sources (CASSIS) was created to provide publishable quality spectra to the community. Low-resolution spectra have been available in CASSIS since 2011, and we present here the addition of the high-resolution spectra. The high-resolution observations represent approximately one third of all staring observations performed with the IRS instrument. While low-resolution observations are adapted to faint objects and/or broad spectral features (e.g., dust continuum, molecular bands), high-resolution observations allow more accurate measurements of narrow features (e.g., ionic emission lines) as well as a better sampling of the spectral profile of various features. Given the narrow aperture of the two high-resolution modules, cosmic ray hits and spurious features usually plague the spectra. Our pipeline is designed to minimize these effects through various improvements. A super sampled point-spread function was created in order to enable the optimal extraction in addition to the full aperture extraction. The pipeline selects the best extraction method based on the spatial extent of the object. For unresolved sources, the optimal extraction provides a significant improvement in signal-to-noise ratio over a full aperture extraction. We have developed several techniques for optimal extraction, including a differential method that eliminates low-level rogue pixels (even when no dedicated background observation was performed). The updated CASSIS repository now includes all the spectra ever taken by the IRS, with the exception of mapping observations

    A Post-AGB Star in the Small Magellanic Cloud Observed with the Spitzer Infrared Spectrograph

    Get PDF
    We have observed an evolved star with a rare combination of spectral features, MSX SMC 029, in the Small Magellanic Cloud (SMC) using the low-resolution modules of the Infrared Spectrograph on the Spitzer Space Telescope. A cool dust continuum dominates the spectrum of MSX SMC 029. The spectrum also shows both emission from polycyclic aromatic hydrocarbons (PAHs) and absorption at 13.7 micron from C2H2, a juxtaposition seen in only two other sources, AFGL 2688 and IRAS 13416-6243, both post-asymptotic giant branch (AGB) objects. As in these sources, the PAH spectrum has the unusual trait that the peak emission in the 7-9 micron complex lies beyond 8.0 micron. In addition, the 8.6 micron feature has an intensity as strong as the C-C modes which normally peak between 7.7 and 7.9 micron. The relative flux of the feature at 11.3 micron to that at 8 micron suggests that the PAHs in MSX SMC 029 either have a low ionization fraction or are largely unprocessed. The 13-16 micron wavelength region shows strong absorption features similar to those observed in the post-AGB objects AFGL 618 and SMP LMC 11. This broad absorption may arise from the same molecules which have been identified in those sources: C2H2, C4H2, HC3N, and C6H6. The similarities between MSX SMC 029, AFGL 2688, and AFGL 618 lead us to conclude that MSX SMC 029 has evolved off the AGB in only the past few hundred years, making it the third post-AGB object identified in the SMC.Comment: 4 figures, Fig. 4 color; to appear in the 20 November 2006 Astrophysical Journal Letter

    Gas-phase SO2 in absorption towards massive protostars

    Get PDF
    We present the first detection of the v(3) ro-vibrational band of gas-phase SO2 in absorption in the mid-infrared spectral region around 7.3 mum of a sample of deeply embedded massive protostars. Comparison with model spectra shows that the derived excitation temperatures correlate with previous C2H2 and HCN studies, indicating that the same warm gas component is probed. The SO2 column densities are similar along all lines of sight suggesting that the SO2 formation has saturated, but not destroyed, and the absolute abundances of SO2 are high (similar to 10(7)). Both the high temperature and the high abundance of the detected SO2 are not easily explained by standard hot core chemistry models. Likewise, indicators of shock induced chemistry are lacking

    Evolution of dust and ice features around FU Orionis objects

    Get PDF
    (abridged) We present spectroscopy data for a sample of 14 FUors and 2 TTauri stars observed with the Spitzer Space Telescope or with the Infrared Space Observatory (ISO). Based on the appearance of the 10 micron silicate feature we define 2 categories of FUors. Objects showing the silicate feature in absorption (Category 1) are still embedded in a dusty and icy envelope. The shape of the 10 micron silicate absorption bands is compared to typical dust compositions of the interstellar medium and found to be in general agreement. Only one object (RNO 1B) appears to be too rich in amorphous pyroxene dust, but a superposed emission feature can explain the observed shape. We derive optical depths and extinction values from the silicate band and additional ice bands at 6.0, 6.8 and 15.2 micron. In particular the analysis of the CO_2 ice band at 15.2 micron allows us to search for evidence for ice processing and constrains whether the absorbing material is physically linked to the central object or in the foreground. For objects showing the silicate feature in emission (Category 2), we argue that the emission comes from the surface layer of accretion disks. Analyzing the dust composition reveals that significant grain growth has already taken place within the accretion disks, but no clear indications for crystallization are present. We discuss how these observational results can be explained in the picture of a young, and highly active accretion disk. Finally, a framework is proposed as to how the two categories of FUors can be understood in a general paradigm of the evolution of young, low-mass stars. Only one object (Parsamian 21) shows PAH emission features. Their shapes, however, are often seen toward evolved stars and we question the object's status as a FUor and discuss other possible classifications.Comment: accepted for publication in ApJ; 63 pages preprint style including 8 tables and 24 figure

    TEXES: A Sensitive High-Resolution Grating Spectrograph for the Mid-Infrared

    Get PDF
    We discuss the design and performance of TEXES, the Texas Echelon Cross Echelle Spectrograph. TEXES is a mid-infrared (5-25 um) spectrograph with several operating modes: high-resolution, cross-dispersed with a resolving power of R=100,000, 0.5% spectral coverage, and a ~1.5 by 8" slit; medium-resolution long-slit with R~15,000, 0.5% coverage, and a ~1.5 by 45" slit; low-resolution long-slit with (delta lambda)~0.004 um, 0.25 um coverage, and a ~1.5 by 45" slit; and source acquisition imaging with 0.33" pixels and a 25 by 25" field of view on a 3m telescope. TEXES has been used at the McDonald Observatory 2.7m and the IRTF 3m telescopes, and has proven to be both sensitive and versatile.Comment: 33 pages, 11 figures. Accepted to PASP. For slightly better, color versions of Figs 1-3, see http://nene.as.utexas.edu/richter/texes/pas

    Detection of interstellar CH_3

    Get PDF
    Observations with the Short Wavelength Spectrometer (SWS) onboard the {\it Infrared Space Observatory} (ISO) have led to the first detection of the methyl radical CH3{\rm CH_3} in the interstellar medium. The ν2\nu_2 QQ-branch at 16.5 μ\mum and the RR(0) line at 16.0 μ\mum have been unambiguously detected toward the Galactic center SgrA^*. The analysis of the measured bands gives a column density of (8.0±\pm2.4)×1014\times10^{14} cm2^{-2} and an excitation temperature of (17±2)(17\pm 2) K. Gaseous CO{\rm CO} at a similarly low excitation temperature and C2H2{\rm C_2H_2} are detected for the same line of sight. Using constraints on the H2{\rm H_2} column density obtained from C18O{\rm C^{18}O} and visual extinction, the inferred CH3{\rm CH_3} abundance is (1.3+2.20.7)×108(1.3{{+2.2}\atop{-0.7}}) \times 10^{-8}. The chemically related CH4{\rm CH_4} molecule is not detected, but the pure rotational lines of CH{\rm CH} are seen with the Long Wavelength Spectrometer (LWS). The absolute abundances and the CH3/CH4{\rm CH_3/CH_4} and CH3/CH{\rm CH_3/CH} ratios are inconsistent with published pure gas-phase models of dense clouds. The data require a mix of diffuse and translucent clouds with different densities and extinctions, and/or the development of translucent models in which gas-grain chemistry, freeze-out and reactions of H{\rm H} with polycyclic aromatic hydrocarbons and solid aliphatic material are included.Comment: 2 figures. ApJL, Accepte

    Spitzer Quasar and ULIRG Evolution Study (QUEST). IV. Comparison of 1-Jy Ultraluminous Infrared Galaxies with Palomar-Green Quasars

    Get PDF
    We report the results from a comprehensive study of 74 ultraluminous infrared galaxies (ULIRGs) and 34 Palomar-Green (PG) quasars within z ~ 0.3$ observed with the Spitzer Infrared Spectrograph (IRS). The contribution of nuclear activity to the bolometric luminosity in these systems is quantified using six independent methods that span a range in wavelength and give consistent results within ~ +/-10-15% on average. The average derived AGN contribution in ULIRGs is ~35-40%, ranging from ~15-35% among "cool" (f_25/f_60 =< 0.2) optically classified HII-like and LINER ULIRGs to ~50 and ~75% among warm Seyfert 2 and Seyfert 1 ULIRGs, respectively. This number exceeds ~80% in PG QSOs. ULIRGs fall in one of three distinct AGN classes: (1) objects with small extinctions and large PAH equivalent widths are highly starburst-dominated; (2) systems with large extinctions and modest PAH equivalent widths have larger AGN contributions, but still tend to be starburst-dominated; and (3) ULIRGs with both small extinctions and small PAH equivalent widths host AGN that are at least as powerful as the starbursts. The AGN contributions in class 2 ULIRGs are more uncertain than in the other objects, and we cannot formally rule out the possibility that these objects represent a physically distinct type of ULIRGs. A morphological trend is seen along the sequence (1)-(2)-(3), in general agreement with the standard ULIRG - QSO evolution scenario and suggestive of a broad peak in extinction during the intermediate stages of merger evolution. However, the scatter in this sequence, implies that black hole accretion, in addition to depending on the merger phase, also has a strong chaotic/random component, as in local AGN. (abridged)Comment: 61 pages, 39 figures, 16 tables, accepted for publication in ApJS, June 2009 issue. Unabbreviated version can be found at http://www.astro.umd.edu/~veilleux/pubs/quest4.pd
    corecore